Description of fast matrix multiplication algorithm: ⟨14×22×26:4725⟩

Algorithm type

16X8Y8Z8+7X8Y6Z8+4X6Y8Z8+4X8Y6Z6+7X6Y8Z6+4X6Y6Z8+X4Y12Z4+X4Y8Z8+X12Y2Z4+6X6Y6Z6+X4Y6Z8+4X8Y4Z4+2X8Y2Z6+16X6Y6Z4+17X4Y8Z4+33X4Y6Z6+8X4Y4Z8+X8Y4Z2+2X8Y2Z4+24X6Y6Z2+X6Y4Z4+11X4Y6Z4+2X4Y4Z6+X4Y2Z8+3X2Y8Z4+48X2Y6Z6+X6Y4Z2+X6Y2Z4+239X4Y4Z4+X4Y2Z6+2X2Y8Z2+3X2Y6Z4+42X4Y3Z4+24X3Y4Z4+3X6Y2Z2+5X4Y4Z2+24X4Y3Z3+5X4Y2Z4+42X3Y4Z3+24X3Y3Z4+11X2Y6Z2+18X2Y4Z4+7X2Y2Z6+6X6YZ2+36X3Y3Z3+6X2Y3Z4+59X4Y2Z2+12X4YZ3+96X3Y3Z2+208X2Y4Z2+198X2Y3Z3+91X2Y2Z4+6X4Y2Z+12X4YZ2+144X3Y3Z+6X3Y2Z2+66X2Y3Z2+12X2Y2Z3+6X2YZ4+18XY4Z2+288XY3Z3+6X3Y2Z+6X3YZ2+936X2Y2Z2+6X2YZ3+12XY4Z+18XY3Z2+18X3YZ+30X2Y2Z+30X2YZ2+30XY3Z+72XY2Z2+42XYZ3+210X2YZ+636XY2Z+258XYZ2+468XYZ16X8Y8Z87X8Y6Z84X6Y8Z84X8Y6Z67X6Y8Z64X6Y6Z8X4Y12Z4X4Y8Z8X12Y2Z46X6Y6Z6X4Y6Z84X8Y4Z42X8Y2Z616X6Y6Z417X4Y8Z433X4Y6Z68X4Y4Z8X8Y4Z22X8Y2Z424X6Y6Z2X6Y4Z411X4Y6Z42X4Y4Z6X4Y2Z83X2Y8Z448X2Y6Z6X6Y4Z2X6Y2Z4239X4Y4Z4X4Y2Z62X2Y8Z23X2Y6Z442X4Y3Z424X3Y4Z43X6Y2Z25X4Y4Z224X4Y3Z35X4Y2Z442X3Y4Z324X3Y3Z411X2Y6Z218X2Y4Z47X2Y2Z66X6YZ236X3Y3Z36X2Y3Z459X4Y2Z212X4YZ396X3Y3Z2208X2Y4Z2198X2Y3Z391X2Y2Z46X4Y2Z12X4YZ2144X3Y3Z6X3Y2Z266X2Y3Z212X2Y2Z36X2YZ418XY4Z2288XY3Z36X3Y2Z6X3YZ2936X2Y2Z26X2YZ312XY4Z18XY3Z218X3YZ30X2Y2Z30X2YZ230XY3Z72XY2Z242XYZ3210X2YZ636XY2Z258XYZ2468XYZ16*X^8*Y^8*Z^8+7*X^8*Y^6*Z^8+4*X^6*Y^8*Z^8+4*X^8*Y^6*Z^6+7*X^6*Y^8*Z^6+4*X^6*Y^6*Z^8+X^4*Y^12*Z^4+X^4*Y^8*Z^8+X^12*Y^2*Z^4+6*X^6*Y^6*Z^6+X^4*Y^6*Z^8+4*X^8*Y^4*Z^4+2*X^8*Y^2*Z^6+16*X^6*Y^6*Z^4+17*X^4*Y^8*Z^4+33*X^4*Y^6*Z^6+8*X^4*Y^4*Z^8+X^8*Y^4*Z^2+2*X^8*Y^2*Z^4+24*X^6*Y^6*Z^2+X^6*Y^4*Z^4+11*X^4*Y^6*Z^4+2*X^4*Y^4*Z^6+X^4*Y^2*Z^8+3*X^2*Y^8*Z^4+48*X^2*Y^6*Z^6+X^6*Y^4*Z^2+X^6*Y^2*Z^4+239*X^4*Y^4*Z^4+X^4*Y^2*Z^6+2*X^2*Y^8*Z^2+3*X^2*Y^6*Z^4+42*X^4*Y^3*Z^4+24*X^3*Y^4*Z^4+3*X^6*Y^2*Z^2+5*X^4*Y^4*Z^2+24*X^4*Y^3*Z^3+5*X^4*Y^2*Z^4+42*X^3*Y^4*Z^3+24*X^3*Y^3*Z^4+11*X^2*Y^6*Z^2+18*X^2*Y^4*Z^4+7*X^2*Y^2*Z^6+6*X^6*Y*Z^2+36*X^3*Y^3*Z^3+6*X^2*Y^3*Z^4+59*X^4*Y^2*Z^2+12*X^4*Y*Z^3+96*X^3*Y^3*Z^2+208*X^2*Y^4*Z^2+198*X^2*Y^3*Z^3+91*X^2*Y^2*Z^4+6*X^4*Y^2*Z+12*X^4*Y*Z^2+144*X^3*Y^3*Z+6*X^3*Y^2*Z^2+66*X^2*Y^3*Z^2+12*X^2*Y^2*Z^3+6*X^2*Y*Z^4+18*X*Y^4*Z^2+288*X*Y^3*Z^3+6*X^3*Y^2*Z+6*X^3*Y*Z^2+936*X^2*Y^2*Z^2+6*X^2*Y*Z^3+12*X*Y^4*Z+18*X*Y^3*Z^2+18*X^3*Y*Z+30*X^2*Y^2*Z+30*X^2*Y*Z^2+30*X*Y^3*Z+72*X*Y^2*Z^2+42*X*Y*Z^3+210*X^2*Y*Z+636*X*Y^2*Z+258*X*Y*Z^2+468*X*Y*Z

Algorithm definition

The algorithm ⟨14×22×26:4725⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨7×11×13:675⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table