Description of fast matrix multiplication algorithm: ⟨6×10×14:553⟩

Algorithm type

2X4Y6Z4+24X4Y4Z4+2X2Y8Z2+2X6Y2Z2+4X2Y6Z2+6X2Y4Z4+7X2Y2Z6+2X4Y2Z2+14X2Y4Z2+12X2Y2Z4+12X2Y3Z2+148X2Y2Z2+12XY4Z+12X3YZ+24XY3Z+36XY2Z2+42XYZ3+12X2YZ+84XY2Z+72XYZ2+24XYZ2X4Y6Z424X4Y4Z42X2Y8Z22X6Y2Z24X2Y6Z26X2Y4Z47X2Y2Z62X4Y2Z214X2Y4Z212X2Y2Z412X2Y3Z2148X2Y2Z212XY4Z12X3YZ24XY3Z36XY2Z242XYZ312X2YZ84XY2Z72XYZ224XYZ2*X^4*Y^6*Z^4+24*X^4*Y^4*Z^4+2*X^2*Y^8*Z^2+2*X^6*Y^2*Z^2+4*X^2*Y^6*Z^2+6*X^2*Y^4*Z^4+7*X^2*Y^2*Z^6+2*X^4*Y^2*Z^2+14*X^2*Y^4*Z^2+12*X^2*Y^2*Z^4+12*X^2*Y^3*Z^2+148*X^2*Y^2*Z^2+12*X*Y^4*Z+12*X^3*Y*Z+24*X*Y^3*Z+36*X*Y^2*Z^2+42*X*Y*Z^3+12*X^2*Y*Z+84*X*Y^2*Z+72*X*Y*Z^2+24*X*Y*Z

Algorithm definition

The algorithm ⟨6×10×14:553⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨3×5×7:79⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table