Description of fast matrix multiplication algorithm: ⟨6×10×14:560⟩

Algorithm type

2X4Y8Z4+4X4Y6Z4+20X4Y4Z4+3X2Y8Z2+X2Y6Z4+7X2Y6Z2+4X2Y4Z4+2X2Y2Z6+21X2Y4Z2+9X2Y2Z4+24X2Y3Z2+139X2Y2Z2+18XY4Z+6XY3Z2+42XY3Z+24XY2Z2+12XYZ3+54XY2Z+54XYZ2+114XYZ2X4Y8Z44X4Y6Z420X4Y4Z43X2Y8Z2X2Y6Z47X2Y6Z24X2Y4Z42X2Y2Z621X2Y4Z29X2Y2Z424X2Y3Z2139X2Y2Z218XY4Z6XY3Z242XY3Z24XY2Z212XYZ354XY2Z54XYZ2114XYZ2*X^4*Y^8*Z^4+4*X^4*Y^6*Z^4+20*X^4*Y^4*Z^4+3*X^2*Y^8*Z^2+X^2*Y^6*Z^4+7*X^2*Y^6*Z^2+4*X^2*Y^4*Z^4+2*X^2*Y^2*Z^6+21*X^2*Y^4*Z^2+9*X^2*Y^2*Z^4+24*X^2*Y^3*Z^2+139*X^2*Y^2*Z^2+18*X*Y^4*Z+6*X*Y^3*Z^2+42*X*Y^3*Z+24*X*Y^2*Z^2+12*X*Y*Z^3+54*X*Y^2*Z+54*X*Y*Z^2+114*X*Y*Z

Algorithm definition

The algorithm ⟨6×10×14:560⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨3×5×7:80⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table