Description of fast matrix multiplication algorithm: ⟨8×10×12:630⟩

Algorithm type

30X4Y4Z4+X6Y2Z2+2X4Y4Z2+2X4Y2Z4+X2Y6Z2+X2Y4Z4+7X4Y2Z2+16X2Y4Z2+14X2Y2Z4+196X2Y2Z2+6X3YZ+12X2Y2Z+12X2YZ2+6XY3Z+6XY2Z2+42X2YZ+96XY2Z+84XYZ2+96XYZ30X4Y4Z4X6Y2Z22X4Y4Z22X4Y2Z4X2Y6Z2X2Y4Z47X4Y2Z216X2Y4Z214X2Y2Z4196X2Y2Z26X3YZ12X2Y2Z12X2YZ26XY3Z6XY2Z242X2YZ96XY2Z84XYZ296XYZ30*X^4*Y^4*Z^4+X^6*Y^2*Z^2+2*X^4*Y^4*Z^2+2*X^4*Y^2*Z^4+X^2*Y^6*Z^2+X^2*Y^4*Z^4+7*X^4*Y^2*Z^2+16*X^2*Y^4*Z^2+14*X^2*Y^2*Z^4+196*X^2*Y^2*Z^2+6*X^3*Y*Z+12*X^2*Y^2*Z+12*X^2*Y*Z^2+6*X*Y^3*Z+6*X*Y^2*Z^2+42*X^2*Y*Z+96*X*Y^2*Z+84*X*Y*Z^2+96*X*Y*Z

Algorithm definition

The algorithm ⟨8×10×12:630⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨4×5×6:90⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table