Description of fast matrix multiplication algorithm: ⟨8×12×14:861⟩

Algorithm type

45X4Y4Z4+X6Y2Z2+2X4Y2Z4+X2Y6Z2+3X2Y4Z4+10X4Y2Z2+27X2Y4Z2+12X2Y2Z4+292X2Y2Z2+6X3YZ+12X2YZ2+6XY3Z+18XY2Z2+60X2YZ+162XY2Z+72XYZ2+132XYZ45X4Y4Z4X6Y2Z22X4Y2Z4X2Y6Z23X2Y4Z410X4Y2Z227X2Y4Z212X2Y2Z4292X2Y2Z26X3YZ12X2YZ26XY3Z18XY2Z260X2YZ162XY2Z72XYZ2132XYZ45*X^4*Y^4*Z^4+X^6*Y^2*Z^2+2*X^4*Y^2*Z^4+X^2*Y^6*Z^2+3*X^2*Y^4*Z^4+10*X^4*Y^2*Z^2+27*X^2*Y^4*Z^2+12*X^2*Y^2*Z^4+292*X^2*Y^2*Z^2+6*X^3*Y*Z+12*X^2*Y*Z^2+6*X*Y^3*Z+18*X*Y^2*Z^2+60*X^2*Y*Z+162*X*Y^2*Z+72*X*Y*Z^2+132*X*Y*Z

Algorithm definition

The algorithm ⟨8×12×14:861⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨4×6×7:123⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table