Description of fast matrix multiplication algorithm: ⟨8×12×14:875⟩

Algorithm type

2X8Y8Z8+2X8Y6Z6+X4Y12Z4+2X4Y10Z4+X4Y10Z2+42X4Y4Z4+12X4Y3Z3+2X4Y2Z4+18X2Y6Z2+12X2Y5Z2+X4Y2Z2+6X2Y5Z+18X2Y4Z2+234X2Y2Z2+12X2YZ2+72XY3Z+6X2YZ+108XY2Z+324XYZ2X8Y8Z82X8Y6Z6X4Y12Z42X4Y10Z4X4Y10Z242X4Y4Z412X4Y3Z32X4Y2Z418X2Y6Z212X2Y5Z2X4Y2Z26X2Y5Z18X2Y4Z2234X2Y2Z212X2YZ272XY3Z6X2YZ108XY2Z324XYZ2*X^8*Y^8*Z^8+2*X^8*Y^6*Z^6+X^4*Y^12*Z^4+2*X^4*Y^10*Z^4+X^4*Y^10*Z^2+42*X^4*Y^4*Z^4+12*X^4*Y^3*Z^3+2*X^4*Y^2*Z^4+18*X^2*Y^6*Z^2+12*X^2*Y^5*Z^2+X^4*Y^2*Z^2+6*X^2*Y^5*Z+18*X^2*Y^4*Z^2+234*X^2*Y^2*Z^2+12*X^2*Y*Z^2+72*X*Y^3*Z+6*X^2*Y*Z+108*X*Y^2*Z+324*X*Y*Z

Algorithm definition

The algorithm ⟨8×12×14:875⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨4×6×7:125⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table