Description of fast matrix multiplication algorithm: ⟨14×14×22:2632⟩

Algorithm type

X12Y12Z14+X8Y10Z14+X8Y12Z8+4X8Y8Z8+2X8Y8Z6+3X8Y6Z8+2X6Y8Z8+X8Y6Z6+X6Y8Z6+5X6Y6Z8+X4Y2Z14+6X6Y6Z7+3X4Y10Z4+X4Y8Z4+16X4Y6Z6+6X4Y5Z7+6X6Y4Z4+X4Y8Z2+7X4Y6Z4+X4Y4Z6+24X2Y6Z6+X2Y4Z8+2X6Y4Z2+131X4Y4Z4+2X4Y2Z6+X2Y4Z6+12X4Y4Z3+18X4Y3Z4+12X3Y4Z4+14X6Y2Z2+2X4Y4Z2+6X4Y3Z3+9X4Y2Z4+6X3Y4Z3+30X3Y3Z4+8X2Y6Z2+12X2Y4Z4+6X2Y2Z6+6X2YZ7+18X2Y5Z2+16X4Y2Z2+58X2Y4Z2+96X2Y3Z3+50X2Y2Z4+36X3Y2Z2+6X2Y4Z+6X2Y3Z2+6X2Y2Z3+144XY3Z3+6XY2Z4+12X3Y2Z+661X2Y2Z2+12X2YZ3+6XY2Z3+84X3YZ+12X2Y2Z+54X2YZ2+48XY3Z+72XY2Z2+36XYZ3+96X2YZ+312XY2Z+300XYZ2+114XYZX12Y12Z14X8Y10Z14X8Y12Z84X8Y8Z82X8Y8Z63X8Y6Z82X6Y8Z8X8Y6Z6X6Y8Z65X6Y6Z8X4Y2Z146X6Y6Z73X4Y10Z4X4Y8Z416X4Y6Z66X4Y5Z76X6Y4Z4X4Y8Z27X4Y6Z4X4Y4Z624X2Y6Z6X2Y4Z82X6Y4Z2131X4Y4Z42X4Y2Z6X2Y4Z612X4Y4Z318X4Y3Z412X3Y4Z414X6Y2Z22X4Y4Z26X4Y3Z39X4Y2Z46X3Y4Z330X3Y3Z48X2Y6Z212X2Y4Z46X2Y2Z66X2YZ718X2Y5Z216X4Y2Z258X2Y4Z296X2Y3Z350X2Y2Z436X3Y2Z26X2Y4Z6X2Y3Z26X2Y2Z3144XY3Z36XY2Z412X3Y2Z661X2Y2Z212X2YZ36XY2Z384X3YZ12X2Y2Z54X2YZ248XY3Z72XY2Z236XYZ396X2YZ312XY2Z300XYZ2114XYZX^12*Y^12*Z^14+X^8*Y^10*Z^14+X^8*Y^12*Z^8+4*X^8*Y^8*Z^8+2*X^8*Y^8*Z^6+3*X^8*Y^6*Z^8+2*X^6*Y^8*Z^8+X^8*Y^6*Z^6+X^6*Y^8*Z^6+5*X^6*Y^6*Z^8+X^4*Y^2*Z^14+6*X^6*Y^6*Z^7+3*X^4*Y^10*Z^4+X^4*Y^8*Z^4+16*X^4*Y^6*Z^6+6*X^4*Y^5*Z^7+6*X^6*Y^4*Z^4+X^4*Y^8*Z^2+7*X^4*Y^6*Z^4+X^4*Y^4*Z^6+24*X^2*Y^6*Z^6+X^2*Y^4*Z^8+2*X^6*Y^4*Z^2+131*X^4*Y^4*Z^4+2*X^4*Y^2*Z^6+X^2*Y^4*Z^6+12*X^4*Y^4*Z^3+18*X^4*Y^3*Z^4+12*X^3*Y^4*Z^4+14*X^6*Y^2*Z^2+2*X^4*Y^4*Z^2+6*X^4*Y^3*Z^3+9*X^4*Y^2*Z^4+6*X^3*Y^4*Z^3+30*X^3*Y^3*Z^4+8*X^2*Y^6*Z^2+12*X^2*Y^4*Z^4+6*X^2*Y^2*Z^6+6*X^2*Y*Z^7+18*X^2*Y^5*Z^2+16*X^4*Y^2*Z^2+58*X^2*Y^4*Z^2+96*X^2*Y^3*Z^3+50*X^2*Y^2*Z^4+36*X^3*Y^2*Z^2+6*X^2*Y^4*Z+6*X^2*Y^3*Z^2+6*X^2*Y^2*Z^3+144*X*Y^3*Z^3+6*X*Y^2*Z^4+12*X^3*Y^2*Z+661*X^2*Y^2*Z^2+12*X^2*Y*Z^3+6*X*Y^2*Z^3+84*X^3*Y*Z+12*X^2*Y^2*Z+54*X^2*Y*Z^2+48*X*Y^3*Z+72*X*Y^2*Z^2+36*X*Y*Z^3+96*X^2*Y*Z+312*X*Y^2*Z+300*X*Y*Z^2+114*X*Y*Z

Algorithm definition

The algorithm ⟨14×14×22:2632⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨7×7×11:376⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table