Description of fast matrix multiplication algorithm: ⟨8×8×10:434⟩

Algorithm type

X8Y8Z8+X4Y6Z4+20X4Y4Z4+X4Y4Z2+2X4Y2Z4+2X2Y6Z2+X2Y2Z6+3X4Y2Z2+8X2Y4Z2+2X2Y2Z4+6X2Y3Z2+111X2Y2Z2+6X2Y2Z+12X2YZ2+12XY3Z+6XYZ3+18X2YZ+48XY2Z+12XYZ2+162XYZX8Y8Z8X4Y6Z420X4Y4Z4X4Y4Z22X4Y2Z42X2Y6Z2X2Y2Z63X4Y2Z28X2Y4Z22X2Y2Z46X2Y3Z2111X2Y2Z26X2Y2Z12X2YZ212XY3Z6XYZ318X2YZ48XY2Z12XYZ2162XYZX^8*Y^8*Z^8+X^4*Y^6*Z^4+20*X^4*Y^4*Z^4+X^4*Y^4*Z^2+2*X^4*Y^2*Z^4+2*X^2*Y^6*Z^2+X^2*Y^2*Z^6+3*X^4*Y^2*Z^2+8*X^2*Y^4*Z^2+2*X^2*Y^2*Z^4+6*X^2*Y^3*Z^2+111*X^2*Y^2*Z^2+6*X^2*Y^2*Z+12*X^2*Y*Z^2+12*X*Y^3*Z+6*X*Y*Z^3+18*X^2*Y*Z+48*X*Y^2*Z+12*X*Y*Z^2+162*X*Y*Z

Algorithm definition

The algorithm ⟨8×8×10:434⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨4×4×5:62⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table