Description of fast matrix multiplication algorithm: ⟨8×8×10:427⟩

Algorithm type

6X6Y4Z4+X4Y4Z6+X2Y4Z8+2X6Y4Z2+9X4Y4Z4+2X4Y2Z6+X2Y4Z6+8X6Y2Z2+4X4Y2Z4+2X2Y6Z2+4X2Y4Z4+10X4Y2Z2+2X2Y4Z2+36X3Y2Z2+6X2Y2Z3+6XY2Z4+12X3Y2Z+63X2Y2Z2+12X2YZ3+6XY2Z3+48X3YZ+24X2YZ2+12XY3Z+24XY2Z2+60X2YZ+12XY2Z+54XYZ6X6Y4Z4X4Y4Z6X2Y4Z82X6Y4Z29X4Y4Z42X4Y2Z6X2Y4Z68X6Y2Z24X4Y2Z42X2Y6Z24X2Y4Z410X4Y2Z22X2Y4Z236X3Y2Z26X2Y2Z36XY2Z412X3Y2Z63X2Y2Z212X2YZ36XY2Z348X3YZ24X2YZ212XY3Z24XY2Z260X2YZ12XY2Z54XYZ6*X^6*Y^4*Z^4+X^4*Y^4*Z^6+X^2*Y^4*Z^8+2*X^6*Y^4*Z^2+9*X^4*Y^4*Z^4+2*X^4*Y^2*Z^6+X^2*Y^4*Z^6+8*X^6*Y^2*Z^2+4*X^4*Y^2*Z^4+2*X^2*Y^6*Z^2+4*X^2*Y^4*Z^4+10*X^4*Y^2*Z^2+2*X^2*Y^4*Z^2+36*X^3*Y^2*Z^2+6*X^2*Y^2*Z^3+6*X*Y^2*Z^4+12*X^3*Y^2*Z+63*X^2*Y^2*Z^2+12*X^2*Y*Z^3+6*X*Y^2*Z^3+48*X^3*Y*Z+24*X^2*Y*Z^2+12*X*Y^3*Z+24*X*Y^2*Z^2+60*X^2*Y*Z+12*X*Y^2*Z+54*X*Y*Z

Algorithm definition

The algorithm ⟨8×8×10:427⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨4×4×5:61⟩.

Algorithm description

Algorithm symmetries

The following group of 6 isotropies acts as a permutation group on algorithm tensor representation:

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table