Description of fast matrix multiplication algorithm: ⟨6×8×10:329⟩

Algorithm type

13X4Y4Z4+3X6Y2Z2+X4Y4Z2+2X2Y6Z2+2X2Y4Z4+4X2Y2Z6+3X4Y2Z2+8X2Y4Z2+6X2Y2Z4+83X2Y2Z2+18X3YZ+6X2Y2Z+12XY3Z+12XY2Z2+24XYZ3+18X2YZ+48XY2Z+36XYZ2+30XYZ13X4Y4Z43X6Y2Z2X4Y4Z22X2Y6Z22X2Y4Z44X2Y2Z63X4Y2Z28X2Y4Z26X2Y2Z483X2Y2Z218X3YZ6X2Y2Z12XY3Z12XY2Z224XYZ318X2YZ48XY2Z36XYZ230XYZ13*X^4*Y^4*Z^4+3*X^6*Y^2*Z^2+X^4*Y^4*Z^2+2*X^2*Y^6*Z^2+2*X^2*Y^4*Z^4+4*X^2*Y^2*Z^6+3*X^4*Y^2*Z^2+8*X^2*Y^4*Z^2+6*X^2*Y^2*Z^4+83*X^2*Y^2*Z^2+18*X^3*Y*Z+6*X^2*Y^2*Z+12*X*Y^3*Z+12*X*Y^2*Z^2+24*X*Y*Z^3+18*X^2*Y*Z+48*X*Y^2*Z+36*X*Y*Z^2+30*X*Y*Z

Algorithm definition

The algorithm ⟨6×8×10:329⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨3×4×5:47⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table