Description of fast matrix multiplication algorithm: ⟨10×22×26:3507⟩

Algorithm type

16X10Y10Z8+24X10Y10Z4+5X8Y8Z8+7X6Y8Z6+X6Y6Z8+X6Y6Z6+X4Y8Z6+3X8Y4Z4+14X4Y8Z4+35X4Y6Z6+X8Y2Z4+8X6Y4Z4+96X5Y5Z4+X4Y8Z2+14X4Y6Z4+2X2Y10Z2+5X2Y8Z4+48X2Y6Z6+4X6Y4Z2+2X6Y2Z4+144X5Y5Z2+105X4Y4Z4+2X4Y2Z6+25X2Y8Z2+4X2Y6Z4+3X2Y4Z6+6X6Y2Z2+5X4Y4Z2+42X3Y4Z3+6X3Y3Z4+38X2Y6Z2+4X2Y4Z4+6X2Y2Z6+6X3Y3Z3+6X2Y4Z3+27X4Y2Z2+121X2Y4Z2+210X2Y3Z3+9X2Y2Z4+6X4YZ2+48X3Y2Z2+6X2Y4Z+84X2Y3Z2+12XY5Z+30XY4Z2+288XY3Z3+24X3Y2Z+12X3YZ2+536X2Y2Z2+12X2YZ3+150XY4Z+24XY3Z2+18XY2Z3+36X3YZ+30X2Y2Z+228XY3Z+24XY2Z2+36XYZ3+54X2YZ+222XY2Z+54XYZ2+516XYZ16X10Y10Z824X10Y10Z45X8Y8Z87X6Y8Z6X6Y6Z8X6Y6Z6X4Y8Z63X8Y4Z414X4Y8Z435X4Y6Z6X8Y2Z48X6Y4Z496X5Y5Z4X4Y8Z214X4Y6Z42X2Y10Z25X2Y8Z448X2Y6Z64X6Y4Z22X6Y2Z4144X5Y5Z2105X4Y4Z42X4Y2Z625X2Y8Z24X2Y6Z43X2Y4Z66X6Y2Z25X4Y4Z242X3Y4Z36X3Y3Z438X2Y6Z24X2Y4Z46X2Y2Z66X3Y3Z36X2Y4Z327X4Y2Z2121X2Y4Z2210X2Y3Z39X2Y2Z46X4YZ248X3Y2Z26X2Y4Z84X2Y3Z212XY5Z30XY4Z2288XY3Z324X3Y2Z12X3YZ2536X2Y2Z212X2YZ3150XY4Z24XY3Z218XY2Z336X3YZ30X2Y2Z228XY3Z24XY2Z236XYZ354X2YZ222XY2Z54XYZ2516XYZ16*X^10*Y^10*Z^8+24*X^10*Y^10*Z^4+5*X^8*Y^8*Z^8+7*X^6*Y^8*Z^6+X^6*Y^6*Z^8+X^6*Y^6*Z^6+X^4*Y^8*Z^6+3*X^8*Y^4*Z^4+14*X^4*Y^8*Z^4+35*X^4*Y^6*Z^6+X^8*Y^2*Z^4+8*X^6*Y^4*Z^4+96*X^5*Y^5*Z^4+X^4*Y^8*Z^2+14*X^4*Y^6*Z^4+2*X^2*Y^10*Z^2+5*X^2*Y^8*Z^4+48*X^2*Y^6*Z^6+4*X^6*Y^4*Z^2+2*X^6*Y^2*Z^4+144*X^5*Y^5*Z^2+105*X^4*Y^4*Z^4+2*X^4*Y^2*Z^6+25*X^2*Y^8*Z^2+4*X^2*Y^6*Z^4+3*X^2*Y^4*Z^6+6*X^6*Y^2*Z^2+5*X^4*Y^4*Z^2+42*X^3*Y^4*Z^3+6*X^3*Y^3*Z^4+38*X^2*Y^6*Z^2+4*X^2*Y^4*Z^4+6*X^2*Y^2*Z^6+6*X^3*Y^3*Z^3+6*X^2*Y^4*Z^3+27*X^4*Y^2*Z^2+121*X^2*Y^4*Z^2+210*X^2*Y^3*Z^3+9*X^2*Y^2*Z^4+6*X^4*Y*Z^2+48*X^3*Y^2*Z^2+6*X^2*Y^4*Z+84*X^2*Y^3*Z^2+12*X*Y^5*Z+30*X*Y^4*Z^2+288*X*Y^3*Z^3+24*X^3*Y^2*Z+12*X^3*Y*Z^2+536*X^2*Y^2*Z^2+12*X^2*Y*Z^3+150*X*Y^4*Z+24*X*Y^3*Z^2+18*X*Y^2*Z^3+36*X^3*Y*Z+30*X^2*Y^2*Z+228*X*Y^3*Z+24*X*Y^2*Z^2+36*X*Y*Z^3+54*X^2*Y*Z+222*X*Y^2*Z+54*X*Y*Z^2+516*X*Y*Z

Algorithm definition

The algorithm ⟨10×22×26:3507⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨5×11×13:501⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table