Description of fast matrix multiplication algorithm: ⟨4×10×14:385⟩

Algorithm type

2X4Y10Z4+2X4Y8Z4+X4Y6Z4+6X2Y10Z2+10X4Y4Z4+7X2Y8Z2+X4Y2Z4+4X2Y6Z2+12X2Y5Z2+18X2Y4Z2+2X2Y2Z4+6X2Y3Z2+36XY5Z+74X2Y2Z2+42XY4Z+6X2YZ2+24XY3Z+36XY2Z+12XYZ2+84XYZ2X4Y10Z42X4Y8Z4X4Y6Z46X2Y10Z210X4Y4Z47X2Y8Z2X4Y2Z44X2Y6Z212X2Y5Z218X2Y4Z22X2Y2Z46X2Y3Z236XY5Z74X2Y2Z242XY4Z6X2YZ224XY3Z36XY2Z12XYZ284XYZ2*X^4*Y^10*Z^4+2*X^4*Y^8*Z^4+X^4*Y^6*Z^4+6*X^2*Y^10*Z^2+10*X^4*Y^4*Z^4+7*X^2*Y^8*Z^2+X^4*Y^2*Z^4+4*X^2*Y^6*Z^2+12*X^2*Y^5*Z^2+18*X^2*Y^4*Z^2+2*X^2*Y^2*Z^4+6*X^2*Y^3*Z^2+36*X*Y^5*Z+74*X^2*Y^2*Z^2+42*X*Y^4*Z+6*X^2*Y*Z^2+24*X*Y^3*Z+36*X*Y^2*Z+12*X*Y*Z^2+84*X*Y*Z

Algorithm definition

The algorithm ⟨4×10×14:385⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨2×5×7:55⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table