Description of fast matrix multiplication algorithm: ⟨8×20×32:3024⟩

Algorithm type

16X4Y10Z4+64X4Y8Z4+16X4Y6Z4+112X2Y10Z2+176X4Y4Z4+96X2Y8Z2+128X2Y6Z2+32X2Y5Z2+256X2Y4Z2+32X2Y3Z2+224XY5Z+624X2Y2Z2+192XY4Z+256XY3Z+256XY2Z+544XYZ16X4Y10Z464X4Y8Z416X4Y6Z4112X2Y10Z2176X4Y4Z496X2Y8Z2128X2Y6Z232X2Y5Z2256X2Y4Z232X2Y3Z2224XY5Z624X2Y2Z2192XY4Z256XY3Z256XY2Z544XYZ16*X^4*Y^10*Z^4+64*X^4*Y^8*Z^4+16*X^4*Y^6*Z^4+112*X^2*Y^10*Z^2+176*X^4*Y^4*Z^4+96*X^2*Y^8*Z^2+128*X^2*Y^6*Z^2+32*X^2*Y^5*Z^2+256*X^2*Y^4*Z^2+32*X^2*Y^3*Z^2+224*X*Y^5*Z+624*X^2*Y^2*Z^2+192*X*Y^4*Z+256*X*Y^3*Z+256*X*Y^2*Z+544*X*Y*Z

Algorithm definition

The algorithm ⟨8×20×32:3024⟩ is the (Kronecker) tensor product of ⟨2×5×8:63⟩ with ⟨4×4×4:48⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table