Description of fast matrix multiplication algorithm: ⟨8×20×32:3136⟩

Algorithm type

X8Y16Z8+8X8Y12Z8+X4Y20Z4+7X8Y8Z8+10X4Y16Z4+11X4Y12Z4+21X4Y8Z4+96X4Y6Z4+12X2Y10Z2+101X4Y4Z4+120X2Y8Z2+132X2Y6Z2+144X2Y4Z2+288X2Y3Z2+36XY5Z+456X2Y2Z2+360XY4Z+396XY3Z+324XY2Z+612XYZX8Y16Z88X8Y12Z8X4Y20Z47X8Y8Z810X4Y16Z411X4Y12Z421X4Y8Z496X4Y6Z412X2Y10Z2101X4Y4Z4120X2Y8Z2132X2Y6Z2144X2Y4Z2288X2Y3Z236XY5Z456X2Y2Z2360XY4Z396XY3Z324XY2Z612XYZX^8*Y^16*Z^8+8*X^8*Y^12*Z^8+X^4*Y^20*Z^4+7*X^8*Y^8*Z^8+10*X^4*Y^16*Z^4+11*X^4*Y^12*Z^4+21*X^4*Y^8*Z^4+96*X^4*Y^6*Z^4+12*X^2*Y^10*Z^2+101*X^4*Y^4*Z^4+120*X^2*Y^8*Z^2+132*X^2*Y^6*Z^2+144*X^2*Y^4*Z^2+288*X^2*Y^3*Z^2+36*X*Y^5*Z+456*X^2*Y^2*Z^2+360*X*Y^4*Z+396*X*Y^3*Z+324*X*Y^2*Z+612*X*Y*Z

Algorithm definition

The algorithm ⟨8×20×32:3136⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨4×10×16:448⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table