Description of fast matrix multiplication algorithm: ⟨4×10×16:441⟩

Algorithm type

X4Y10Z4+4X4Y8Z4+X4Y6Z4+7X2Y10Z2+11X4Y4Z4+6X2Y8Z2+8X2Y6Z2+6X2Y5Z2+32X2Y4Z2+6X2Y3Z2+42XY5Z+83X2Y2Z2+36XY4Z+48XY3Z+48XY2Z+102XYZX4Y10Z44X4Y8Z4X4Y6Z47X2Y10Z211X4Y4Z46X2Y8Z28X2Y6Z26X2Y5Z232X2Y4Z26X2Y3Z242XY5Z83X2Y2Z236XY4Z48XY3Z48XY2Z102XYZX^4*Y^10*Z^4+4*X^4*Y^8*Z^4+X^4*Y^6*Z^4+7*X^2*Y^10*Z^2+11*X^4*Y^4*Z^4+6*X^2*Y^8*Z^2+8*X^2*Y^6*Z^2+6*X^2*Y^5*Z^2+32*X^2*Y^4*Z^2+6*X^2*Y^3*Z^2+42*X*Y^5*Z+83*X^2*Y^2*Z^2+36*X*Y^4*Z+48*X*Y^3*Z+48*X*Y^2*Z+102*X*Y*Z

Algorithm definition

The algorithm ⟨4×10×16:441⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨2×5×8:63⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table