Description of fast matrix multiplication algorithm: ⟨8×20×22:2184⟩

Algorithm type

X8Y14Z8+X8Y12Z8+4X8Y10Z8+X4Y18Z4+3X8Y8Z8+X8Y6Z8+6X4Y14Z4+2X8Y6Z6+3X4Y12Z4+5X4Y10Z4+6X4Y8Z4+6X4Y7Z4+X4Y8Z2+25X4Y6Z4+3X2Y10Z2+24X4Y5Z4+6X2Y9Z2+75X4Y4Z4+18X2Y8Z2+6X4Y3Z4+36X2Y7Z2+12X4Y3Z3+3X4Y2Z4+54X2Y6Z2+30X2Y5Z2+X4Y2Z2+90X2Y4Z2+6X2Y4Z+114X2Y3Z2+18XY5Z+429X2Y2Z2+108XY4Z+18X2YZ2+216XY3Z+6X2YZ+324XY2Z+522XYZX8Y14Z8X8Y12Z84X8Y10Z8X4Y18Z43X8Y8Z8X8Y6Z86X4Y14Z42X8Y6Z63X4Y12Z45X4Y10Z46X4Y8Z46X4Y7Z4X4Y8Z225X4Y6Z43X2Y10Z224X4Y5Z46X2Y9Z275X4Y4Z418X2Y8Z26X4Y3Z436X2Y7Z212X4Y3Z33X4Y2Z454X2Y6Z230X2Y5Z2X4Y2Z290X2Y4Z26X2Y4Z114X2Y3Z218XY5Z429X2Y2Z2108XY4Z18X2YZ2216XY3Z6X2YZ324XY2Z522XYZX^8*Y^14*Z^8+X^8*Y^12*Z^8+4*X^8*Y^10*Z^8+X^4*Y^18*Z^4+3*X^8*Y^8*Z^8+X^8*Y^6*Z^8+6*X^4*Y^14*Z^4+2*X^8*Y^6*Z^6+3*X^4*Y^12*Z^4+5*X^4*Y^10*Z^4+6*X^4*Y^8*Z^4+6*X^4*Y^7*Z^4+X^4*Y^8*Z^2+25*X^4*Y^6*Z^4+3*X^2*Y^10*Z^2+24*X^4*Y^5*Z^4+6*X^2*Y^9*Z^2+75*X^4*Y^4*Z^4+18*X^2*Y^8*Z^2+6*X^4*Y^3*Z^4+36*X^2*Y^7*Z^2+12*X^4*Y^3*Z^3+3*X^4*Y^2*Z^4+54*X^2*Y^6*Z^2+30*X^2*Y^5*Z^2+X^4*Y^2*Z^2+90*X^2*Y^4*Z^2+6*X^2*Y^4*Z+114*X^2*Y^3*Z^2+18*X*Y^5*Z+429*X^2*Y^2*Z^2+108*X*Y^4*Z+18*X^2*Y*Z^2+216*X*Y^3*Z+6*X^2*Y*Z+324*X*Y^2*Z+522*X*Y*Z

Algorithm definition

The algorithm ⟨8×20×22:2184⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨4×10×11:312⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table