Description of fast matrix multiplication algorithm: ⟨5×7×8:206⟩

Algorithm type

4X3Y2Z2+X2Y2Z3+5X4YZ+69X2Y2Z2+11X3YZ+X2YZ2+2XY2Z2+2XYZ3+27X2YZ+27XY2Z+16XYZ2+41XYZ4X3Y2Z2X2Y2Z35X4YZ69X2Y2Z211X3YZX2YZ22XY2Z22XYZ327X2YZ27XY2Z16XYZ241XYZ4*X^3*Y^2*Z^2+X^2*Y^2*Z^3+5*X^4*Y*Z+69*X^2*Y^2*Z^2+11*X^3*Y*Z+X^2*Y*Z^2+2*X*Y^2*Z^2+2*X*Y*Z^3+27*X^2*Y*Z+27*X*Y^2*Z+16*X*Y*Z^2+41*X*Y*Z

Algorithm definition

The algorithm ⟨5×7×8:206⟩ could be constructed using the following decomposition:

⟨5×7×8:206⟩ = ⟨5×7×6:150⟩ + ⟨5×7×2:56⟩.

This decomposition is defined by the following equality:

TraceMulA_1_1A_1_2A_1_3A_1_4A_1_5A_1_6A_1_7A_2_1A_2_2A_2_3A_2_4A_2_5A_2_6A_2_7A_3_1A_3_2A_3_3A_3_4A_3_5A_3_6A_3_7A_4_1A_4_2A_4_3A_4_4A_4_5A_4_6A_4_7A_5_1A_5_2A_5_3A_5_4A_5_5A_5_6A_5_7B_1_1B_1_2B_1_3B_1_4B_1_5B_1_6B_1_7B_1_8B_2_1B_2_2B_2_3B_2_4B_2_5B_2_6B_2_7B_2_8B_3_1B_3_2B_3_3B_3_4B_3_5B_3_6B_3_7B_3_8B_4_1B_4_2B_4_3B_4_4B_4_5B_4_6B_4_7B_4_8B_5_1B_5_2B_5_3B_5_4B_5_5B_5_6B_5_7B_5_8B_6_1B_6_2B_6_3B_6_4B_6_5B_6_6B_6_7B_6_8B_7_1B_7_2B_7_3B_7_4B_7_5B_7_6B_7_7B_7_8C_1_1C_1_2C_1_3C_1_4C_1_5C_2_1C_2_2C_2_3C_2_4C_2_5C_3_1C_3_2C_3_3C_3_4C_3_5C_4_1C_4_2C_4_3C_4_4C_4_5C_5_1C_5_2C_5_3C_5_4C_5_5C_6_1C_6_2C_6_3C_6_4C_6_5C_7_1C_7_2C_7_3C_7_4C_7_5C_8_1C_8_2C_8_3C_8_4C_8_5=TraceMulA_1_1A_1_2A_1_3A_1_4A_1_5A_1_6A_1_7A_2_1A_2_2A_2_3A_2_4A_2_5A_2_6A_2_7A_3_1A_3_2A_3_3A_3_4A_3_5A_3_6A_3_7A_4_1A_4_2A_4_3A_4_4A_4_5A_4_6A_4_7A_5_1A_5_2A_5_3A_5_4A_5_5A_5_6A_5_7B_1_1B_1_2B_1_3B_1_4B_1_5B_1_6B_2_1B_2_2B_2_3B_2_4B_2_5B_2_6B_3_1B_3_2B_3_3B_3_4B_3_5B_3_6B_4_1B_4_2B_4_3B_4_4B_4_5B_4_6B_5_1B_5_2B_5_3B_5_4B_5_5B_5_6B_6_1B_6_2B_6_3B_6_4B_6_5B_6_6B_7_1B_7_2B_7_3B_7_4B_7_5B_7_6C_1_1C_1_2C_1_3C_1_4C_1_5C_2_1C_2_2C_2_3C_2_4C_2_5C_3_1C_3_2C_3_3C_3_4C_3_5C_4_1C_4_2C_4_3C_4_4C_4_5C_5_1C_5_2C_5_3C_5_4C_5_5C_6_1C_6_2C_6_3C_6_4C_6_5+TraceMulA_1_1A_1_2A_1_3A_1_4A_1_5A_1_6A_1_7A_2_1A_2_2A_2_3A_2_4A_2_5A_2_6A_2_7A_3_1A_3_2A_3_3A_3_4A_3_5A_3_6A_3_7A_4_1A_4_2A_4_3A_4_4A_4_5A_4_6A_4_7A_5_1A_5_2A_5_3A_5_4A_5_5A_5_6A_5_7B_1_7B_1_8B_2_7B_2_8B_3_7B_3_8B_4_7B_4_8B_5_7B_5_8B_6_7B_6_8B_7_7B_7_8C_7_1C_7_2C_7_3C_7_4C_7_5C_8_1C_8_2C_8_3C_8_4C_8_5TraceMulA_1_1A_1_2A_1_3A_1_4A_1_5A_1_6A_1_7A_2_1A_2_2A_2_3A_2_4A_2_5A_2_6A_2_7A_3_1A_3_2A_3_3A_3_4A_3_5A_3_6A_3_7A_4_1A_4_2A_4_3A_4_4A_4_5A_4_6A_4_7A_5_1A_5_2A_5_3A_5_4A_5_5A_5_6A_5_7B_1_1B_1_2B_1_3B_1_4B_1_5B_1_6B_1_7B_1_8B_2_1B_2_2B_2_3B_2_4B_2_5B_2_6B_2_7B_2_8B_3_1B_3_2B_3_3B_3_4B_3_5B_3_6B_3_7B_3_8B_4_1B_4_2B_4_3B_4_4B_4_5B_4_6B_4_7B_4_8B_5_1B_5_2B_5_3B_5_4B_5_5B_5_6B_5_7B_5_8B_6_1B_6_2B_6_3B_6_4B_6_5B_6_6B_6_7B_6_8B_7_1B_7_2B_7_3B_7_4B_7_5B_7_6B_7_7B_7_8C_1_1C_1_2C_1_3C_1_4C_1_5C_2_1C_2_2C_2_3C_2_4C_2_5C_3_1C_3_2C_3_3C_3_4C_3_5C_4_1C_4_2C_4_3C_4_4C_4_5C_5_1C_5_2C_5_3C_5_4C_5_5C_6_1C_6_2C_6_3C_6_4C_6_5C_7_1C_7_2C_7_3C_7_4C_7_5C_8_1C_8_2C_8_3C_8_4C_8_5TraceMulA_1_1A_1_2A_1_3A_1_4A_1_5A_1_6A_1_7A_2_1A_2_2A_2_3A_2_4A_2_5A_2_6A_2_7A_3_1A_3_2A_3_3A_3_4A_3_5A_3_6A_3_7A_4_1A_4_2A_4_3A_4_4A_4_5A_4_6A_4_7A_5_1A_5_2A_5_3A_5_4A_5_5A_5_6A_5_7B_1_1B_1_2B_1_3B_1_4B_1_5B_1_6B_2_1B_2_2B_2_3B_2_4B_2_5B_2_6B_3_1B_3_2B_3_3B_3_4B_3_5B_3_6B_4_1B_4_2B_4_3B_4_4B_4_5B_4_6B_5_1B_5_2B_5_3B_5_4B_5_5B_5_6B_6_1B_6_2B_6_3B_6_4B_6_5B_6_6B_7_1B_7_2B_7_3B_7_4B_7_5B_7_6C_1_1C_1_2C_1_3C_1_4C_1_5C_2_1C_2_2C_2_3C_2_4C_2_5C_3_1C_3_2C_3_3C_3_4C_3_5C_4_1C_4_2C_4_3C_4_4C_4_5C_5_1C_5_2C_5_3C_5_4C_5_5C_6_1C_6_2C_6_3C_6_4C_6_5TraceMulA_1_1A_1_2A_1_3A_1_4A_1_5A_1_6A_1_7A_2_1A_2_2A_2_3A_2_4A_2_5A_2_6A_2_7A_3_1A_3_2A_3_3A_3_4A_3_5A_3_6A_3_7A_4_1A_4_2A_4_3A_4_4A_4_5A_4_6A_4_7A_5_1A_5_2A_5_3A_5_4A_5_5A_5_6A_5_7B_1_7B_1_8B_2_7B_2_8B_3_7B_3_8B_4_7B_4_8B_5_7B_5_8B_6_7B_6_8B_7_7B_7_8C_7_1C_7_2C_7_3C_7_4C_7_5C_8_1C_8_2C_8_3C_8_4C_8_5Trace(Mul(Matrix(5, 7, [[A_1_1,A_1_2,A_1_3,A_1_4,A_1_5,A_1_6,A_1_7],[A_2_1,A_2_2,A_2_3,A_2_4,A_2_5,A_2_6,A_2_7],[A_3_1,A_3_2,A_3_3,A_3_4,A_3_5,A_3_6,A_3_7],[A_4_1,A_4_2,A_4_3,A_4_4,A_4_5,A_4_6,A_4_7],[A_5_1,A_5_2,A_5_3,A_5_4,A_5_5,A_5_6,A_5_7]]),Matrix(7, 8, [[B_1_1,B_1_2,B_1_3,B_1_4,B_1_5,B_1_6,B_1_7,B_1_8],[B_2_1,B_2_2,B_2_3,B_2_4,B_2_5,B_2_6,B_2_7,B_2_8],[B_3_1,B_3_2,B_3_3,B_3_4,B_3_5,B_3_6,B_3_7,B_3_8],[B_4_1,B_4_2,B_4_3,B_4_4,B_4_5,B_4_6,B_4_7,B_4_8],[B_5_1,B_5_2,B_5_3,B_5_4,B_5_5,B_5_6,B_5_7,B_5_8],[B_6_1,B_6_2,B_6_3,B_6_4,B_6_5,B_6_6,B_6_7,B_6_8],[B_7_1,B_7_2,B_7_3,B_7_4,B_7_5,B_7_6,B_7_7,B_7_8]]),Matrix(8, 5, [[C_1_1,C_1_2,C_1_3,C_1_4,C_1_5],[C_2_1,C_2_2,C_2_3,C_2_4,C_2_5],[C_3_1,C_3_2,C_3_3,C_3_4,C_3_5],[C_4_1,C_4_2,C_4_3,C_4_4,C_4_5],[C_5_1,C_5_2,C_5_3,C_5_4,C_5_5],[C_6_1,C_6_2,C_6_3,C_6_4,C_6_5],[C_7_1,C_7_2,C_7_3,C_7_4,C_7_5],[C_8_1,C_8_2,C_8_3,C_8_4,C_8_5]]))) = Trace(Mul(Matrix(5, 7, [[A_1_1,A_1_2,A_1_3,A_1_4,A_1_5,A_1_6,A_1_7],[A_2_1,A_2_2,A_2_3,A_2_4,A_2_5,A_2_6,A_2_7],[A_3_1,A_3_2,A_3_3,A_3_4,A_3_5,A_3_6,A_3_7],[A_4_1,A_4_2,A_4_3,A_4_4,A_4_5,A_4_6,A_4_7],[A_5_1,A_5_2,A_5_3,A_5_4,A_5_5,A_5_6,A_5_7]]),Matrix(7, 6, [[B_1_1,B_1_2,B_1_3,B_1_4,B_1_5,B_1_6],[B_2_1,B_2_2,B_2_3,B_2_4,B_2_5,B_2_6],[B_3_1,B_3_2,B_3_3,B_3_4,B_3_5,B_3_6],[B_4_1,B_4_2,B_4_3,B_4_4,B_4_5,B_4_6],[B_5_1,B_5_2,B_5_3,B_5_4,B_5_5,B_5_6],[B_6_1,B_6_2,B_6_3,B_6_4,B_6_5,B_6_6],[B_7_1,B_7_2,B_7_3,B_7_4,B_7_5,B_7_6]]),Matrix(6, 5, [[C_1_1,C_1_2,C_1_3,C_1_4,C_1_5],[C_2_1,C_2_2,C_2_3,C_2_4,C_2_5],[C_3_1,C_3_2,C_3_3,C_3_4,C_3_5],[C_4_1,C_4_2,C_4_3,C_4_4,C_4_5],[C_5_1,C_5_2,C_5_3,C_5_4,C_5_5],[C_6_1,C_6_2,C_6_3,C_6_4,C_6_5]])))+Trace(Mul(Matrix(5, 7, [[A_1_1,A_1_2,A_1_3,A_1_4,A_1_5,A_1_6,A_1_7],[A_2_1,A_2_2,A_2_3,A_2_4,A_2_5,A_2_6,A_2_7],[A_3_1,A_3_2,A_3_3,A_3_4,A_3_5,A_3_6,A_3_7],[A_4_1,A_4_2,A_4_3,A_4_4,A_4_5,A_4_6,A_4_7],[A_5_1,A_5_2,A_5_3,A_5_4,A_5_5,A_5_6,A_5_7]]),Matrix(7, 2, [[B_1_7,B_1_8],[B_2_7,B_2_8],[B_3_7,B_3_8],[B_4_7,B_4_8],[B_5_7,B_5_8],[B_6_7,B_6_8],[B_7_7,B_7_8]]),Matrix(2, 5, [[C_7_1,C_7_2,C_7_3,C_7_4,C_7_5],[C_8_1,C_8_2,C_8_3,C_8_4,C_8_5]])))

N.B.: for any matrices A, B and C such that the expression Tr(Mul(A,B,C)) is defined, one can construct several trilinear homogeneous polynomials P(A,B,C) such that P(A,B,C)=Tr(Mul(A,B,C)) (P(A,B,C) variables are A,B and C's coefficients). Each trilinear P expression encodes a matrix multiplication algorithm: the coefficient in C_i_j of P(A,B,C) is the (i,j)-th entry of the matrix product Mul(A,B)=Transpose(C).

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table