Description of fast matrix multiplication algorithm: ⟨5×6×9:197⟩

Algorithm type

2X4Y2Z2+X3Y2Z2+4X4YZ+70X2Y2Z2+10X3YZ+2X2Y2Z+X2YZ2+20X2YZ+27XY2Z+20XYZ2+40XYZ2X4Y2Z2X3Y2Z24X4YZ70X2Y2Z210X3YZ2X2Y2ZX2YZ220X2YZ27XY2Z20XYZ240XYZ2*X^4*Y^2*Z^2+X^3*Y^2*Z^2+4*X^4*Y*Z+70*X^2*Y^2*Z^2+10*X^3*Y*Z+2*X^2*Y^2*Z+X^2*Y*Z^2+20*X^2*Y*Z+27*X*Y^2*Z+20*X*Y*Z^2+40*X*Y*Z

Algorithm definition

The algorithm ⟨5×6×9:197⟩ could be constructed using the following decomposition:

⟨5×6×9:197⟩ = ⟨5×6×2:47⟩ + ⟨5×6×7:150⟩.

This decomposition is defined by the following equality:

TraceMulA_1_1A_1_2A_1_3A_1_4A_1_5A_1_6A_2_1A_2_2A_2_3A_2_4A_2_5A_2_6A_3_1A_3_2A_3_3A_3_4A_3_5A_3_6A_4_1A_4_2A_4_3A_4_4A_4_5A_4_6A_5_1A_5_2A_5_3A_5_4A_5_5A_5_6B_1_1B_1_2B_1_3B_1_4B_1_5B_1_6B_1_7B_1_8B_1_9B_2_1B_2_2B_2_3B_2_4B_2_5B_2_6B_2_7B_2_8B_2_9B_3_1B_3_2B_3_3B_3_4B_3_5B_3_6B_3_7B_3_8B_3_9B_4_1B_4_2B_4_3B_4_4B_4_5B_4_6B_4_7B_4_8B_4_9B_5_1B_5_2B_5_3B_5_4B_5_5B_5_6B_5_7B_5_8B_5_9B_6_1B_6_2B_6_3B_6_4B_6_5B_6_6B_6_7B_6_8B_6_9C_1_1C_1_2C_1_3C_1_4C_1_5C_2_1C_2_2C_2_3C_2_4C_2_5C_3_1C_3_2C_3_3C_3_4C_3_5C_4_1C_4_2C_4_3C_4_4C_4_5C_5_1C_5_2C_5_3C_5_4C_5_5C_6_1C_6_2C_6_3C_6_4C_6_5C_7_1C_7_2C_7_3C_7_4C_7_5C_8_1C_8_2C_8_3C_8_4C_8_5C_9_1C_9_2C_9_3C_9_4C_9_5=TraceMulA_1_1A_1_2A_1_3A_1_4A_1_5A_1_6A_2_1A_2_2A_2_3A_2_4A_2_5A_2_6A_3_1A_3_2A_3_3A_3_4A_3_5A_3_6A_4_1A_4_2A_4_3A_4_4A_4_5A_4_6A_5_1A_5_2A_5_3A_5_4A_5_5A_5_6B_1_1B_1_2B_2_1B_2_2B_3_1B_3_2B_4_1B_4_2B_5_1B_5_2B_6_1B_6_2C_1_1C_1_2C_1_3C_1_4C_1_5C_2_1C_2_2C_2_3C_2_4C_2_5+TraceMulA_1_1A_1_2A_1_3A_1_4A_1_5A_1_6A_2_1A_2_2A_2_3A_2_4A_2_5A_2_6A_3_1A_3_2A_3_3A_3_4A_3_5A_3_6A_4_1A_4_2A_4_3A_4_4A_4_5A_4_6A_5_1A_5_2A_5_3A_5_4A_5_5A_5_6B_1_3B_1_4B_1_5B_1_6B_1_7B_1_8B_1_9B_2_3B_2_4B_2_5B_2_6B_2_7B_2_8B_2_9B_3_3B_3_4B_3_5B_3_6B_3_7B_3_8B_3_9B_4_3B_4_4B_4_5B_4_6B_4_7B_4_8B_4_9B_5_3B_5_4B_5_5B_5_6B_5_7B_5_8B_5_9B_6_3B_6_4B_6_5B_6_6B_6_7B_6_8B_6_9C_3_1C_3_2C_3_3C_3_4C_3_5C_4_1C_4_2C_4_3C_4_4C_4_5C_5_1C_5_2C_5_3C_5_4C_5_5C_6_1C_6_2C_6_3C_6_4C_6_5C_7_1C_7_2C_7_3C_7_4C_7_5C_8_1C_8_2C_8_3C_8_4C_8_5C_9_1C_9_2C_9_3C_9_4C_9_5

N.B.: for any matrices A, B and C such that the expression Tr(Mul(A,B,C)) is defined, one can construct several trilinear homogeneous polynomials P(A,B,C) such that P(A,B,C)=Tr(Mul(A,B,C)) (P(A,B,C) variables are A,B and C's coefficients). Each trilinear P expression encodes a matrix multiplication algorithm: the coefficient in C_i_j of P(A,B,C) is the (i,j)-th entry of the matrix product Mul(A,B)=Transpose(C).

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table