Description of fast matrix multiplication algorithm: ⟨5×16×19:1024⟩

Algorithm type

16X4Y6Z5+16X5Y5Z4+2X4Y6Z4+16X4Y5Z5+2X3Y8Z3+X4Y5Z4+24X2Y6Z5+24X5Y5Z2+7X4Y4Z4+X3Y6Z3+8X2Y8Z2+24X2Y5Z5+XY10Z+X3Y4Z4+X2Y8Z+X2Y7Z2+16X2Y6Z3+2X4Y3Z3+19X3Y4Z3+X3Y3Z4+13X2Y6Z2+16X2Y5Z3+19XY8Z+25XY6Z3+8X3Y3Z3+3X2Y5Z2+2X2Y4Z3+X2Y2Z5+4XY7Z+XY6Z2+24XY5Z3+5X4Y2Z2+75X2Y4Z2+X2Y3Z3+2X2Y2Z4+34XY6Z+4XY4Z3+XY2Z5+8X3Y2Z2+7X2Y4Z+28X2Y3Z2+4X2Y2Z3+9XY5Z+8XY4Z2+11X3Y2Z+7X3YZ2+2X2Y3Z+101X2Y2Z2+7X2YZ3+51XY4Z+3XY3Z2+19XY2Z3+19X3YZ+23X2Y2Z+3X2YZ2+49XY3Z+8XY2Z2+12XYZ3+25X2YZ+116XY2Z+XYZ2+82XYZ16X4Y6Z516X5Y5Z42X4Y6Z416X4Y5Z52X3Y8Z3X4Y5Z424X2Y6Z524X5Y5Z27X4Y4Z4X3Y6Z38X2Y8Z224X2Y5Z5XY10ZX3Y4Z4X2Y8ZX2Y7Z216X2Y6Z32X4Y3Z319X3Y4Z3X3Y3Z413X2Y6Z216X2Y5Z319XY8Z25XY6Z38X3Y3Z33X2Y5Z22X2Y4Z3X2Y2Z54XY7ZXY6Z224XY5Z35X4Y2Z275X2Y4Z2X2Y3Z32X2Y2Z434XY6Z4XY4Z3XY2Z58X3Y2Z27X2Y4Z28X2Y3Z24X2Y2Z39XY5Z8XY4Z211X3Y2Z7X3YZ22X2Y3Z101X2Y2Z27X2YZ351XY4Z3XY3Z219XY2Z319X3YZ23X2Y2Z3X2YZ249XY3Z8XY2Z212XYZ325X2YZ116XY2ZXYZ282XYZ16*X^4*Y^6*Z^5+16*X^5*Y^5*Z^4+2*X^4*Y^6*Z^4+16*X^4*Y^5*Z^5+2*X^3*Y^8*Z^3+X^4*Y^5*Z^4+24*X^2*Y^6*Z^5+24*X^5*Y^5*Z^2+7*X^4*Y^4*Z^4+X^3*Y^6*Z^3+8*X^2*Y^8*Z^2+24*X^2*Y^5*Z^5+X*Y^10*Z+X^3*Y^4*Z^4+X^2*Y^8*Z+X^2*Y^7*Z^2+16*X^2*Y^6*Z^3+2*X^4*Y^3*Z^3+19*X^3*Y^4*Z^3+X^3*Y^3*Z^4+13*X^2*Y^6*Z^2+16*X^2*Y^5*Z^3+19*X*Y^8*Z+25*X*Y^6*Z^3+8*X^3*Y^3*Z^3+3*X^2*Y^5*Z^2+2*X^2*Y^4*Z^3+X^2*Y^2*Z^5+4*X*Y^7*Z+X*Y^6*Z^2+24*X*Y^5*Z^3+5*X^4*Y^2*Z^2+75*X^2*Y^4*Z^2+X^2*Y^3*Z^3+2*X^2*Y^2*Z^4+34*X*Y^6*Z+4*X*Y^4*Z^3+X*Y^2*Z^5+8*X^3*Y^2*Z^2+7*X^2*Y^4*Z+28*X^2*Y^3*Z^2+4*X^2*Y^2*Z^3+9*X*Y^5*Z+8*X*Y^4*Z^2+11*X^3*Y^2*Z+7*X^3*Y*Z^2+2*X^2*Y^3*Z+101*X^2*Y^2*Z^2+7*X^2*Y*Z^3+51*X*Y^4*Z+3*X*Y^3*Z^2+19*X*Y^2*Z^3+19*X^3*Y*Z+23*X^2*Y^2*Z+3*X^2*Y*Z^2+49*X*Y^3*Z+8*X*Y^2*Z^2+12*X*Y*Z^3+25*X^2*Y*Z+116*X*Y^2*Z+X*Y*Z^2+82*X*Y*Z

Algorithm definition

The algorithm ⟨5×16×19:1024⟩ could be constructed using the following decomposition:

⟨5×16×19:1024⟩ = ⟨3×6×6:80⟩ + ⟨3×6×7:94⟩ + ⟨2×5×7:56⟩ + ⟨2×6×7:67⟩ + ⟨2×6×6:56⟩ + ⟨2×5×6:47⟩ + ⟨3×6×6:80⟩ + ⟨3×5×7:80⟩ + ⟨3×5×6:68⟩ + ⟨3×5×6:68⟩ + ⟨2×6×6:56⟩ + ⟨3×5×6:68⟩ + ⟨2×5×7:56⟩ + ⟨3×5×6:68⟩ + ⟨3×5×7:80⟩.

This decomposition is defined by the following equality:

TraceMulA_1_1A_1_2A_1_3A_1_4A_1_5A_1_6A_1_7A_1_8A_1_9A_1_10A_1_11A_1_12A_1_13A_1_14A_1_15A_1_16A_2_1A_2_2A_2_3A_2_4A_2_5A_2_6A_2_7A_2_8A_2_9A_2_10A_2_11A_2_12A_2_13A_2_14A_2_15A_2_16A_3_1A_3_2A_3_3A_3_4A_3_5A_3_6A_3_7A_3_8A_3_9A_3_10A_3_11A_3_12A_3_13A_3_14A_3_15A_3_16A_4_1A_4_2A_4_3A_4_4A_4_5A_4_6A_4_7A_4_8A_4_9A_4_10A_4_11A_4_12A_4_13A_4_14A_4_15A_4_16A_5_1A_5_2A_5_3A_5_4A_5_5A_5_6A_5_7A_5_8A_5_9A_5_10A_5_11A_5_12A_5_13A_5_14A_5_15A_5_16B_1_1B_1_2B_1_3B_1_4B_1_5B_1_6B_1_7B_1_8B_1_9B_1_10B_1_11B_1_12B_1_13B_1_14B_1_15B_1_16B_1_17B_1_18B_1_19B_2_1B_2_2B_2_3B_2_4B_2_5B_2_6B_2_7B_2_8B_2_9B_2_10B_2_11B_2_12B_2_13B_2_14B_2_15B_2_16B_2_17B_2_18B_2_19B_3_1B_3_2B_3_3B_3_4B_3_5B_3_6B_3_7B_3_8B_3_9B_3_10B_3_11B_3_12B_3_13B_3_14B_3_15B_3_16B_3_17B_3_18B_3_19B_4_1B_4_2B_4_3B_4_4B_4_5B_4_6B_4_7B_4_8B_4_9B_4_10B_4_11B_4_12B_4_13B_4_14B_4_15B_4_16B_4_17B_4_18B_4_19B_5_1B_5_2B_5_3B_5_4B_5_5B_5_6B_5_7B_5_8B_5_9B_5_10B_5_11B_5_12B_5_13B_5_14B_5_15B_5_16B_5_17B_5_18B_5_19B_6_1B_6_2B_6_3B_6_4B_6_5B_6_6B_6_7B_6_8B_6_9B_6_10B_6_11B_6_12B_6_13B_6_14B_6_15B_6_16B_6_17B_6_18B_6_19B_7_1B_7_2B_7_3B_7_4B_7_5B_7_6B_7_7B_7_8B_7_9B_7_10B_7_11B_7_12B_7_13B_7_14B_7_15B_7_16B_7_17B_7_18B_7_19B_8_1B_8_2B_8_3B_8_4B_8_5B_8_6B_8_7B_8_8B_8_9B_8_10B_8_11B_8_12B_8_13B_8_14B_8_15B_8_16B_8_17B_8_18B_8_19B_9_1B_9_2B_9_3B_9_4B_9_5B_9_6B_9_7B_9_8B_9_9B_9_10B_9_11B_9_12B_9_13B_9_14B_9_15B_9_16B_9_17B_9_18B_9_19B_10_1B_10_2B_10_3B_10_4B_10_5B_10_6B_10_7B_10_8B_10_9B_10_10B_10_11B_10_12B_10_13B_10_14B_10_15B_10_16B_10_17B_10_18B_10_19B_11_1B_11_2B_11_3B_11_4B_11_5B_11_6B_11_7B_11_8B_11_9B_11_10B_11_11B_11_12B_11_13B_11_14B_11_15B_11_16B_11_17B_11_18B_11_19B_12_1B_12_2B_12_3B_12_4B_12_5B_12_6B_12_7B_12_8B_12_9B_12_10B_12_11B_12_12B_12_13B_12_14B_12_15B_12_16B_12_17B_12_18B_12_19B_13_1B_13_2B_13_3B_13_4B_13_5B_13_6B_13_7B_13_8B_13_9B_13_10B_13_11B_13_12B_13_13B_13_14B_13_15B_13_16B_13_17B_13_18B_13_19B_14_1B_14_2B_14_3B_14_4B_14_5B_14_6B_14_7B_14_8B_14_9B_14_10B_14_11B_14_12B_14_13B_14_14B_14_15B_14_16B_14_17B_14_18B_14_19B_15_1B_15_2B_15_3B_15_4B_15_5B_15_6B_15_7B_15_8B_15_9B_15_10B_15_11B_15_12B_15_13B_15_14B_15_15B_15_16B_15_17B_15_18B_15_19B_16_1B_16_2B_16_3B_16_4B_16_5B_16_6B_16_7B_16_8B_16_9B_16_10B_16_11B_16_12B_16_13B_16_14B_16_15B_16_16B_16_17B_16_18B_16_19C_1_1C_1_2C_1_3C_1_4C_1_5C_2_1C_2_2C_2_3C_2_4C_2_5C_3_1C_3_2C_3_3C_3_4C_3_5C_4_1C_4_2C_4_3C_4_4C_4_5C_5_1C_5_2C_5_3C_5_4C_5_5C_6_1C_6_2C_6_3C_6_4C_6_5C_7_1C_7_2C_7_3C_7_4C_7_5C_8_1C_8_2C_8_3C_8_4C_8_5C_9_1C_9_2C_9_3C_9_4C_9_5C_10_1C_10_2C_10_3C_10_4C_10_5C_11_1C_11_2C_11_3C_11_4C_11_5C_12_1C_12_2C_12_3C_12_4C_12_5C_13_1C_13_2C_13_3C_13_4C_13_5C_14_1C_14_2C_14_3C_14_4C_14_5C_15_1C_15_2C_15_3C_15_4C_15_5C_16_1C_16_2C_16_3C_16_4C_16_5C_17_1C_17_2C_17_3C_17_4C_17_5C_18_1C_18_2C_18_3C_18_4C_18_5C_19_1C_19_2C_19_3C_19_4C_19_5=TraceMulA_3_11A_3_12A_3_13A_3_14A_3_15A_3_16A_4_11A_4_12A_4_13A_4_14A_4_15A_4_16A_5_11A_5_12A_5_13A_5_14A_5_15A_5_16B_11_6+B_11_7B_11_1+B_11_8B_11_2+B_11_9B_11_3+B_11_10B_11_4+B_11_11B_11_5+B_11_12B_5_6+B_12_6+B_12_7B_5_1+B_12_1+B_12_8B_5_2+B_12_2+B_12_9B_5_3+B_12_3+B_12_10B_5_4+B_12_4+B_12_11B_5_5+B_12_5+B_12_12B_1_6+B_13_6+B_13_7B_1_1+B_13_1+B_13_8B_1_2+B_13_2+B_13_9B_1_3+B_13_3+B_13_10B_1_4+B_13_4+B_13_11B_1_5+B_13_5+B_13_12B_2_6+B_14_6+B_14_7B_2_1+B_14_1+B_14_8B_2_2+B_14_2+B_14_9B_2_3+B_14_3+B_14_10B_2_4+B_14_4+B_14_11B_2_5+B_14_5+B_14_12B_3_6+B_15_6+B_15_7B_3_1+B_15_1+B_15_8B_3_2+B_15_2+B_15_9B_3_3+B_15_3+B_15_10B_3_4+B_15_4+B_15_11B_3_5+B_15_5+B_15_12B_4_6+B_16_6+B_16_7B_4_1+B_16_1+B_16_8B_4_2+B_16_2+B_16_9B_4_3+B_16_3+B_16_10B_4_4+B_16_4+B_16_11B_4_5+B_16_5+B_16_12C_6_3C_6_1+C_6_4C_6_2+C_6_5C_1_3C_1_1+C_1_4C_1_2+C_1_5C_2_3C_2_1+C_2_4C_2_2+C_2_5C_3_3C_3_1+C_3_4C_3_2+C_3_5C_4_3C_4_1+C_4_4C_4_2+C_4_5C_5_3C_5_1+C_5_4C_5_2+C_5_5+TraceMul-A_3_11-A_3_12-A_3_13-A_3_14-A_3_15-A_3_16-A_4_11A_1_5-A_4_12A_1_1-A_4_13A_1_2-A_4_14A_1_3-A_4_15A_1_4-A_4_16-A_5_11A_2_5-A_5_12A_2_1-A_5_13A_2_2-A_5_14A_2_3-A_5_15A_2_4-A_5_16B_11_13B_11_14B_11_15B_11_16B_11_17B_11_18B_11_19B_12_13B_5_6+B_12_14B_5_1+B_12_15B_5_2+B_12_16B_5_3+B_12_17B_5_4+B_12_18B_5_5+B_12_19B_13_13B_1_6+B_13_14B_1_1+B_13_15B_1_2+B_13_16B_1_3+B_13_17B_1_4+B_13_18B_1_5+B_13_19B_14_13B_2_6+B_14_14B_2_1+B_14_15B_2_2+B_14_16B_2_3+B_14_17B_2_4+B_14_18B_2_5+B_14_19B_15_13B_3_6+B_15_14B_3_1+B_15_15B_3_2+B_15_16B_3_3+B_15_17B_3_4+B_15_18B_3_5+B_15_19B_16_13B_4_6+B_16_14B_4_1+B_16_15B_4_2+B_16_16B_4_3+B_16_17B_4_4+B_16_18B_4_5+B_16_19-C_13_3-C_13_4-C_13_5-C_14_3C_6_1-C_14_4C_6_2-C_14_5-C_15_3C_1_1-C_15_4C_1_2-C_15_5-C_16_3C_2_1-C_16_4C_2_2-C_16_5-C_17_3C_3_1-C_17_4C_3_2-C_17_5-C_18_3C_4_1-C_18_4C_4_2-C_18_5-C_19_3C_5_1-C_19_4C_5_2-C_19_5+TraceMulA_1_5A_1_1A_1_2A_1_3A_1_4A_2_5A_2_1A_2_2A_2_3A_2_4-B_5_13-B_12_13B_5_7-B_5_14-B_12_14B_5_8-B_5_15-B_12_15B_5_9-B_5_16-B_12_16B_5_10-B_5_17-B_12_17B_5_11-B_5_18-B_12_18B_5_12-B_5_19-B_12_19-B_1_13-B_13_13B_1_7-B_1_14-B_13_14B_1_8-B_1_15-B_13_15B_1_9-B_1_16-B_13_16B_1_10-B_1_17-B_13_17B_1_11-B_1_18-B_13_18B_1_12-B_1_19-B_13_19-B_2_13-B_14_13B_2_7-B_2_14-B_14_14B_2_8-B_2_15-B_14_15B_2_9-B_2_16-B_14_16B_2_10-B_2_17-B_14_17B_2_11-B_2_18-B_14_18B_2_12-B_2_19-B_14_19-B_3_13-B_15_13B_3_7-B_3_14-B_15_14B_3_8-B_3_15-B_15_15B_3_9-B_3_16-B_15_16B_3_10-B_3_17-B_15_17B_3_11-B_3_18-B_15_18B_3_12-B_3_19-B_15_19-B_4_13-B_16_13B_4_7-B_4_14-B_16_14B_4_8-B_4_15-B_16_15B_4_9-B_4_16-B_16_16B_4_10-B_4_17-B_16_17B_4_11-B_4_18-B_16_18B_4_12-B_4_19-B_16_19-C_13_1-C_13_4-C_13_2-C_13_5-C_14_1-C_14_4-C_14_2-C_14_5-C_15_1-C_15_4-C_15_2-C_15_5-C_16_1-C_16_4-C_16_2-C_16_5-C_17_1-C_17_4-C_17_2-C_17_5-C_18_1-C_18_4-C_18_2-C_18_5-C_19_1-C_19_4-C_19_2-C_19_5+TraceMul-A_1_11A_1_5-A_1_12A_1_1-A_1_13A_1_2-A_1_14A_1_3-A_1_15A_1_4-A_1_16-A_2_11A_2_5-A_2_12A_2_1-A_2_13A_2_2-A_2_14A_2_3-A_2_15A_2_4-A_2_16B_11_13B_11_14B_11_15B_11_16B_11_17B_11_18B_11_19B_12_13B_12_14B_12_15B_12_16B_12_17B_12_18B_12_19B_13_13B_13_14B_13_15B_13_16B_13_17B_13_18B_13_19B_14_13B_14_14B_14_15B_14_16B_14_17B_14_18B_14_19B_15_13B_15_14B_15_15B_15_16B_15_17B_15_18B_15_19B_16_13B_16_14B_16_15B_16_16B_16_17B_16_18B_16_19-C_13_1-C_13_2-C_6_1-C_14_1-C_6_2-C_14_2-C_1_1-C_15_1-C_1_2-C_15_2-C_2_1-C_16_1-C_2_2-C_16_2-C_3_1-C_17_1-C_3_2-C_17_2-C_4_1-C_18_1-C_4_2-C_18_2-C_5_1-C_19_1-C_5_2-C_19_2+TraceMulA_1_11-A_4_11A_1_12-A_4_12A_1_13-A_4_13A_1_14-A_4_14A_1_15-A_4_15A_1_16-A_4_16A_2_11-A_5_11A_2_12-A_5_12A_2_13-A_5_13A_2_14-A_5_14A_2_15-A_5_15A_2_16-A_5_16B_11_6-B_11_14B_11_1-B_11_15B_11_2-B_11_16B_11_3-B_11_17B_11_4-B_11_18B_11_5-B_11_19B_6_6+B_12_6-B_12_14B_6_1+B_12_1-B_12_15B_6_2+B_12_2-B_12_16B_6_3+B_12_3-B_12_17B_6_4+B_12_4-B_12_18B_6_5+B_12_5-B_12_19B_7_6+B_13_6-B_13_14B_7_1+B_13_1-B_13_15B_7_2+B_13_2-B_13_16B_7_3+B_13_3-B_13_17B_7_4+B_13_4-B_13_18B_7_5+B_13_5-B_13_19B_8_6+B_14_6-B_14_14B_8_1+B_14_1-B_14_15B_8_2+B_14_2-B_14_16B_8_3+B_14_3-B_14_17B_8_4+B_14_4-B_14_18B_8_5+B_14_5-B_14_19B_9_6+B_15_6-B_15_14B_9_1+B_15_1-B_15_15B_9_2+B_15_2-B_15_16B_9_3+B_15_3-B_15_17B_9_4+B_15_4-B_15_18B_9_5+B_15_5-B_15_19B_10_6+B_16_6-B_16_14B_10_1+B_16_1-B_16_15B_10_2+B_16_2-B_16_16B_10_3+B_16_3-B_16_17B_10_4+B_16_4-B_16_18B_10_5+B_16_5-B_16_19C_6_1C_6_2C_1_1C_1_2C_2_1C_2_2C_3_1C_3_2C_4_1C_4_2C_5_1C_5_2+TraceMulA_1_6A_1_7A_1_8A_1_9A_1_10A_2_6A_2_7A_2_8A_2_9A_2_10B_6_7+B_12_7-B_6_14B_6_8+B_12_8-B_6_15B_6_9+B_12_9-B_6_16B_6_10+B_12_10-B_6_17B_6_11+B_12_11-B_6_18B_6_12+B_12_12-B_6_19B_7_7+B_13_7-B_7_14B_7_8+B_13_8-B_7_15B_7_9+B_13_9-B_7_16B_7_10+B_13_10-B_7_17B_7_11+B_13_11-B_7_18B_7_12+B_13_12-B_7_19B_8_7+B_14_7-B_8_14B_8_8+B_14_8-B_8_15B_8_9+B_14_9-B_8_16B_8_10+B_14_10-B_8_17B_8_11+B_14_11-B_8_18B_8_12+B_14_12-B_8_19B_9_7+B_15_7-B_9_14B_9_8+B_15_8-B_9_15B_9_9+B_15_9-B_9_16B_9_10+B_15_10-B_9_17B_9_11+B_15_11-B_9_18B_9_12+B_15_12-B_9_19B_10_7+B_16_7-B_10_14B_10_8+B_16_8-B_10_15B_10_9+B_16_9-B_10_16B_10_10+B_16_10-B_10_17B_10_11+B_16_11-B_10_18B_10_12+B_16_12-B_10_19C_7_1C_7_2C_8_1C_8_2C_9_1C_9_2C_10_1C_10_2C_11_1C_11_2C_12_1C_12_2+TraceMulA_3_11A_3_12A_3_13A_3_14A_3_15A_3_16-A_1_11+A_4_11A_1_6-A_1_12+A_4_12A_1_7-A_1_13+A_4_13A_1_8-A_1_14+A_4_14A_1_9-A_1_15+A_4_15A_1_10-A_1_16+A_4_16-A_2_11+A_5_11A_2_6-A_2_12+A_5_12A_2_7-A_2_13+A_5_13A_2_8-A_2_14+A_5_14A_2_9-A_2_15+A_5_15A_2_10-A_2_16+A_5_16-B_11_7-B_11_8-B_11_9-B_11_10-B_11_11-B_11_12B_6_6-B_12_7B_6_1-B_12_8B_6_2-B_12_9B_6_3-B_12_10B_6_4-B_12_11B_6_5-B_12_12B_7_6-B_13_7B_7_1-B_13_8B_7_2-B_13_9B_7_3-B_13_10B_7_4-B_13_11B_7_5-B_13_12B_8_6-B_14_7B_8_1-B_14_8B_8_2-B_14_9B_8_3-B_14_10B_8_4-B_14_11B_8_5-B_14_12B_9_6-B_15_7B_9_1-B_15_8B_9_2-B_15_9B_9_3-B_15_10B_9_4-B_15_11B_9_5-B_15_12B_10_6-B_16_7B_10_1-B_16_8B_10_2-B_16_9B_10_3-B_16_10B_10_4-B_16_11B_10_5-B_16_12C_6_3-C_7_3C_6_1+C_6_4-C_7_4C_6_2+C_6_5-C_7_5C_1_3-C_8_3C_1_1+C_1_4-C_8_4C_1_2+C_1_5-C_8_5C_2_3-C_9_3C_2_1+C_2_4-C_9_4C_2_2+C_2_5-C_9_5C_3_3-C_10_3C_3_1+C_3_4-C_10_4C_3_2+C_3_5-C_10_5C_4_3-C_11_3C_4_1+C_4_4-C_11_4C_4_2+C_4_5-C_11_5C_5_3-C_12_3C_5_1+C_5_4-C_12_4C_5_2+C_5_5-C_12_5+TraceMulA_3_6-A_3_5-A_3_1+A_3_7-A_3_2+A_3_8-A_3_3+A_3_9-A_3_4+A_3_10A_1_5-A_4_5+A_4_6A_1_1-A_4_1+A_4_7A_1_2-A_4_2+A_4_8A_1_3-A_4_3+A_4_9A_1_4-A_4_4+A_4_10A_2_5-A_5_5+A_5_6A_2_1-A_5_1+A_5_7A_2_2-A_5_2+A_5_8A_2_3-A_5_3+A_5_9A_2_4-A_5_4+A_5_10B_6_13B_5_7+B_6_14B_5_8+B_6_15B_5_9+B_6_16B_5_10+B_6_17B_5_11+B_6_18B_5_12+B_6_19B_7_13B_1_7+B_7_14B_1_8+B_7_15B_1_9+B_7_16B_1_10+B_7_17B_1_11+B_7_18B_1_12+B_7_19B_8_13B_2_7+B_8_14B_2_8+B_8_15B_2_9+B_8_16B_2_10+B_8_17B_2_11+B_8_18B_2_12+B_8_19B_9_13B_3_7+B_9_14B_3_8+B_9_15B_3_9+B_9_16B_3_10+B_9_17B_3_11+B_9_18B_3_12+B_9_19B_10_13B_4_7+B_10_14B_4_8+B_10_15B_4_9+B_10_16B_4_10+B_10_17B_4_11+B_10_18B_4_12+B_10_19C_13_3C_13_1+C_13_4C_13_2+C_13_5C_14_3C_7_1+C_14_1+C_14_4C_7_2+C_14_2+C_14_5C_15_3C_8_1+C_15_1+C_15_4C_8_2+C_15_2+C_15_5C_16_3C_9_1+C_16_1+C_16_4C_9_2+C_16_2+C_16_5C_17_3C_10_1+C_17_1+C_17_4C_10_2+C_17_2+C_17_5C_18_3C_11_1+C_18_1+C_18_4C_11_2+C_18_2+C_18_5C_19_3C_12_1+C_19_1+C_19_4C_12_2+C_19_2+C_19_5+TraceMulA_3_5-A_3_6A_3_1-A_3_7A_3_2-A_3_8A_3_3-A_3_9A_3_4-A_3_10A_4_5-A_4_6A_4_1-A_4_7A_4_2-A_4_8A_4_3-A_4_9A_4_4-A_4_10A_5_5-A_5_6A_5_1-A_5_7A_5_2-A_5_8A_5_3-A_5_9A_5_4-A_5_10B_5_7B_5_8B_5_9B_5_10B_5_11B_5_12B_1_7B_1_8B_1_9B_1_10B_1_11B_1_12B_2_7B_2_8B_2_9B_2_10B_2_11B_2_12B_3_7B_3_8B_3_9B_3_10B_3_11B_3_12B_4_7B_4_8B_4_9B_4_10B_4_11B_4_12C_7_3+C_14_3C_7_1+C_14_1+C_7_4+C_14_4C_7_2+C_14_2+C_7_5+C_14_5C_8_3+C_15_3C_8_1+C_15_1+C_8_4+C_15_4C_8_2+C_15_2+C_8_5+C_15_5C_9_3+C_16_3C_9_1+C_16_1+C_9_4+C_16_4C_9_2+C_16_2+C_9_5+C_16_5C_10_3+C_17_3C_10_1+C_17_1+C_10_4+C_17_4C_10_2+C_17_2+C_10_5+C_17_5C_11_3+C_18_3C_11_1+C_18_1+C_11_4+C_18_4C_11_2+C_18_2+C_11_5+C_18_5C_12_3+C_19_3C_12_1+C_19_1+C_12_4+C_19_4C_12_2+C_19_2+C_12_5+C_19_5+TraceMul-A_3_6+A_3_12-A_3_7+A_3_13-A_3_8+A_3_14-A_3_9+A_3_15-A_3_10+A_3_16A_1_6-A_4_6-A_1_12+A_4_12A_1_7-A_4_7-A_1_13+A_4_13A_1_8-A_4_8-A_1_14+A_4_14A_1_9-A_4_9-A_1_15+A_4_15A_1_10-A_4_10-A_1_16+A_4_16A_2_6-A_5_6-A_2_12+A_5_12A_2_7-A_5_7-A_2_13+A_5_13A_2_8-A_5_8-A_2_14+A_5_14A_2_9-A_5_9-A_2_15+A_5_15A_2_10-A_5_10-A_2_16+A_5_16B_6_6B_6_1B_6_2B_6_3B_6_4B_6_5B_7_6B_7_1B_7_2B_7_3B_7_4B_7_5B_8_6B_8_1B_8_2B_8_3B_8_4B_8_5B_9_6B_9_1B_9_2B_9_3B_9_4B_9_5B_10_6B_10_1B_10_2B_10_3B_10_4B_10_5C_7_3-C_6_3-C_6_4+C_7_4-C_6_5+C_7_5-C_1_3+C_8_3-C_1_4+C_8_4-C_1_5+C_8_5-C_2_3+C_9_3-C_2_4+C_9_4-C_2_5+C_9_5-C_3_3+C_10_3-C_3_4+C_10_4-C_3_5+C_10_5-C_4_3+C_11_3-C_4_4+C_11_4-C_4_5+C_11_5-C_5_3+C_12_3-C_5_4+C_12_4-C_5_5+C_12_5+TraceMul-A_1_11A_1_6-A_1_12A_1_7-A_1_13A_1_8-A_1_14A_1_9-A_1_15A_1_10-A_1_16-A_2_11A_2_6-A_2_12A_2_7-A_2_13A_2_8-A_2_14A_2_9-A_2_15A_2_10-A_2_16B_11_7B_11_8B_11_9B_11_10B_11_11B_11_12B_12_7B_12_8B_12_9B_12_10B_12_11B_12_12B_13_7B_13_8B_13_9B_13_10B_13_11B_13_12B_14_7B_14_8B_14_9B_14_10B_14_11B_14_12B_15_7B_15_8B_15_9B_15_10B_15_11B_15_12B_16_7B_16_8B_16_9B_16_10B_16_11B_16_12C_6_1-C_7_1+C_6_4-C_7_4C_6_2-C_7_2+C_6_5-C_7_5C_1_1-C_8_1+C_1_4-C_8_4C_1_2-C_8_2+C_1_5-C_8_5C_2_1-C_9_1+C_2_4-C_9_4C_2_2-C_9_2+C_2_5-C_9_5C_3_1-C_10_1+C_3_4-C_10_4C_3_2-C_10_2+C_3_5-C_10_5C_4_1-C_11_1+C_4_4-C_11_4C_4_2-C_11_2+C_4_5-C_11_5C_5_1-C_12_1+C_5_4-C_12_4C_5_2-C_12_2+C_5_5-C_12_5+TraceMulA_3_6A_3_7A_3_8A_3_9A_3_10A_4_6A_4_7A_4_8A_4_9A_4_10A_5_6A_5_7A_5_8A_5_9A_5_10B_6_6+B_5_7+B_6_7B_6_1+B_5_8+B_6_8B_6_2+B_5_9+B_6_9B_6_3+B_5_10+B_6_10B_6_4+B_5_11+B_6_11B_6_5+B_5_12+B_6_12B_7_6+B_1_7+B_7_7B_7_1+B_1_8+B_7_8B_7_2+B_1_9+B_7_9B_7_3+B_1_10+B_7_10B_7_4+B_1_11+B_7_11B_7_5+B_1_12+B_7_12B_8_6+B_2_7+B_8_7B_8_1+B_2_8+B_8_8B_8_2+B_2_9+B_8_9B_8_3+B_2_10+B_8_10B_8_4+B_2_11+B_8_11B_8_5+B_2_12+B_8_12B_9_6+B_3_7+B_9_7B_9_1+B_3_8+B_9_8B_9_2+B_3_9+B_9_9B_9_3+B_3_10+B_9_10B_9_4+B_3_11+B_9_11B_9_5+B_3_12+B_9_12B_10_6+B_4_7+B_10_7B_10_1+B_4_8+B_10_8B_10_2+B_4_9+B_10_9B_10_3+B_4_10+B_10_10B_10_4+B_4_11+B_10_11B_10_5+B_4_12+B_10_12C_7_3C_7_4C_7_5C_8_3C_8_4C_8_5C_9_3C_9_4C_9_5C_10_3C_10_4C_10_5C_11_3C_11_4C_11_5C_12_3C_12_4C_12_5+TraceMulA_1_5-A_4_5-A_1_6+A_4_6A_1_1-A_4_1-A_1_7+A_4_7A_1_2-A_4_2-A_1_8+A_4_8A_1_3-A_4_3-A_1_9+A_4_9A_1_4-A_4_4-A_1_10+A_4_10A_2_5-A_5_5-A_2_6+A_5_6A_2_1-A_5_1-A_2_7+A_5_7A_2_2-A_5_2-A_2_8+A_5_8A_2_3-A_5_3-A_2_9+A_5_9A_2_4-A_5_4-A_2_10+A_5_10B_6_13B_6_14B_6_15B_6_16B_6_17B_6_18B_6_19B_7_13B_7_14B_7_15B_7_16B_7_17B_7_18B_7_19B_8_13B_8_14B_8_15B_8_16B_8_17B_8_18B_8_19B_9_13B_9_14B_9_15B_9_16B_9_17B_9_18B_9_19B_10_13B_10_14B_10_15B_10_16B_10_17B_10_18B_10_19-C_13_1-C_13_2-C_7_1-C_14_1-C_7_2-C_14_2-C_8_1-C_15_1-C_8_2-C_15_2-C_9_1-C_16_1-C_9_2-C_16_2-C_10_1-C_17_1-C_10_2-C_17_2-C_11_1-C_18_1-C_11_2-C_18_2-C_12_1-C_19_1-C_12_2-C_19_2+TraceMulA_3_5-A_3_12A_3_1-A_3_13A_3_2-A_3_14A_3_3-A_3_15A_3_4-A_3_16A_4_5-A_4_12A_4_1-A_4_13A_4_2-A_4_14A_4_3-A_4_15A_4_4-A_4_16A_5_5-A_5_12A_5_1-A_5_13A_5_2-A_5_14A_5_3-A_5_15A_5_4-A_5_16B_5_6B_5_1B_5_2B_5_3B_5_4B_5_5B_1_6B_1_1B_1_2B_1_3B_1_4B_1_5B_2_6B_2_1B_2_2B_2_3B_2_4B_2_5B_3_6B_3_1B_3_2B_3_3B_3_4B_3_5B_4_6B_4_1B_4_2B_4_3B_4_4B_4_5C_6_3+C_14_3C_6_4+C_14_4C_6_5+C_14_5C_1_3+C_15_3C_1_4+C_15_4C_1_5+C_15_5C_2_3+C_16_3C_2_4+C_16_4C_2_5+C_16_5C_3_3+C_17_3C_3_4+C_17_4C_3_5+C_17_5C_4_3+C_18_3C_4_4+C_18_4C_4_5+C_18_5C_5_3+C_19_3C_5_4+C_19_4C_5_5+C_19_5+TraceMul-A_3_5-A_3_1-A_3_2-A_3_3-A_3_4A_1_5-A_4_5A_1_1-A_4_1A_1_2-A_4_2A_1_3-A_4_3A_1_4-A_4_4A_2_5-A_5_5A_2_1-A_5_1A_2_2-A_5_2A_2_3-A_5_3A_2_4-A_5_4-B_5_13-B_6_13B_5_6-B_5_14-B_6_14B_5_1-B_5_15-B_6_15B_5_2-B_5_16-B_6_16B_5_3-B_5_17-B_6_17B_5_4-B_5_18-B_6_18B_5_5-B_5_19-B_6_19-B_1_13-B_7_13B_1_6-B_1_14-B_7_14B_1_1-B_1_15-B_7_15B_1_2-B_1_16-B_7_16B_1_3-B_1_17-B_7_17B_1_4-B_1_18-B_7_18B_1_5-B_1_19-B_7_19-B_2_13-B_8_13B_2_6-B_2_14-B_8_14B_2_1-B_2_15-B_8_15B_2_2-B_2_16-B_8_16B_2_3-B_2_17-B_8_17B_2_4-B_2_18-B_8_18B_2_5-B_2_19-B_8_19-B_3_13-B_9_13B_3_6-B_3_14-B_9_14B_3_1-B_3_15-B_9_15B_3_2-B_3_16-B_9_16B_3_3-B_3_17-B_9_17B_3_4-B_3_18-B_9_18B_3_5-B_3_19-B_9_19-B_4_13-B_10_13B_4_6-B_4_14-B_10_14B_4_1-B_4_15-B_10_15B_4_2-B_4_16-B_10_16B_4_3-B_4_17-B_10_17B_4_4-B_4_18-B_10_18B_4_5-B_4_19-B_10_19C_13_3C_13_4C_13_5C_14_3C_14_4C_14_5C_15_3C_15_4C_15_5C_16_3C_16_4C_16_5C_17_3C_17_4C_17_5C_18_3C_18_4C_18_5C_19_3C_19_4C_19_5

N.B.: for any matrices A, B and C such that the expression Tr(Mul(A,B,C)) is defined, one can construct several trilinear homogeneous polynomials P(A,B,C) such that P(A,B,C)=Tr(Mul(A,B,C)) (P(A,B,C) variables are A,B and C's coefficients). Each trilinear P expression encodes a matrix multiplication algorithm: the coefficient in C_i_j of P(A,B,C) is the (i,j)-th entry of the matrix product Mul(A,B)=Transpose(C).

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table