Description of fast matrix multiplication algorithm: ⟨4×21×27:1485⟩

Algorithm type

6X4Y8Z4+6X2Y12Z2+33X4Y6Z4+24X2Y10Z2+12XY12Z+42X4Y4Z4+36X2Y8Z2+48XY10Z+93X2Y6Z2+48XY8Z+129X2Y4Z2+66XY6Z+66X2Y3Z2+48XY5Z+186X2Y2Z2+114XY4Z+54XY3Z+270XY2Z+204XYZ6X4Y8Z46X2Y12Z233X4Y6Z424X2Y10Z212XY12Z42X4Y4Z436X2Y8Z248XY10Z93X2Y6Z248XY8Z129X2Y4Z266XY6Z66X2Y3Z248XY5Z186X2Y2Z2114XY4Z54XY3Z270XY2Z204XYZ6*X^4*Y^8*Z^4+6*X^2*Y^12*Z^2+33*X^4*Y^6*Z^4+24*X^2*Y^10*Z^2+12*X*Y^12*Z+42*X^4*Y^4*Z^4+36*X^2*Y^8*Z^2+48*X*Y^10*Z+93*X^2*Y^6*Z^2+48*X*Y^8*Z+129*X^2*Y^4*Z^2+66*X*Y^6*Z+66*X^2*Y^3*Z^2+48*X*Y^5*Z+186*X^2*Y^2*Z^2+114*X*Y^4*Z+54*X*Y^3*Z+270*X*Y^2*Z+204*X*Y*Z

Algorithm definition

The algorithm ⟨4×21×27:1485⟩ is the (Kronecker) tensor product of ⟨2×3×3:15⟩ with ⟨2×7×9:99⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table