Description of fast matrix multiplication algorithm: ⟨4×21×24:1320⟩

Algorithm type

6X2Y14Z2+12X2Y12Z2+12XY14Z+24X4Y6Z4+6X2Y10Z2+24XY12Z+48X4Y4Z4+6X2Y8Z2+12XY10Z+78X2Y6Z2+12XY8Z+12XY7Z+126X2Y4Z2+84XY6Z+48X2Y3Z2+12XY5Z+198X2Y2Z2+72XY4Z+60XY3Z+264XY2Z+204XYZ6X2Y14Z212X2Y12Z212XY14Z24X4Y6Z46X2Y10Z224XY12Z48X4Y4Z46X2Y8Z212XY10Z78X2Y6Z212XY8Z12XY7Z126X2Y4Z284XY6Z48X2Y3Z212XY5Z198X2Y2Z272XY4Z60XY3Z264XY2Z204XYZ6*X^2*Y^14*Z^2+12*X^2*Y^12*Z^2+12*X*Y^14*Z+24*X^4*Y^6*Z^4+6*X^2*Y^10*Z^2+24*X*Y^12*Z+48*X^4*Y^4*Z^4+6*X^2*Y^8*Z^2+12*X*Y^10*Z+78*X^2*Y^6*Z^2+12*X*Y^8*Z+12*X*Y^7*Z+126*X^2*Y^4*Z^2+84*X*Y^6*Z+48*X^2*Y^3*Z^2+12*X*Y^5*Z+198*X^2*Y^2*Z^2+72*X*Y^4*Z+60*X*Y^3*Z+264*X*Y^2*Z+204*X*Y*Z

Algorithm definition

The algorithm ⟨4×21×24:1320⟩ is the (Kronecker) tensor product of ⟨2×3×3:15⟩ with ⟨2×7×8:88⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table