Description of fast matrix multiplication algorithm: ⟨4×18×27:1290⟩

Algorithm type

9X4Y8Z4+3X2Y12Z2+15X4Y6Z4+15X2Y10Z2+6XY12Z+42X4Y4Z4+30X2Y8Z2+30XY10Z+60X2Y6Z2+24XY8Z+153X2Y4Z2+66XY6Z+30X2Y3Z2+30XY5Z+165X2Y2Z2+126XY4Z+60XY3Z+264XY2Z+162XYZ9X4Y8Z43X2Y12Z215X4Y6Z415X2Y10Z26XY12Z42X4Y4Z430X2Y8Z230XY10Z60X2Y6Z224XY8Z153X2Y4Z266XY6Z30X2Y3Z230XY5Z165X2Y2Z2126XY4Z60XY3Z264XY2Z162XYZ9*X^4*Y^8*Z^4+3*X^2*Y^12*Z^2+15*X^4*Y^6*Z^4+15*X^2*Y^10*Z^2+6*X*Y^12*Z+42*X^4*Y^4*Z^4+30*X^2*Y^8*Z^2+30*X*Y^10*Z+60*X^2*Y^6*Z^2+24*X*Y^8*Z+153*X^2*Y^4*Z^2+66*X*Y^6*Z+30*X^2*Y^3*Z^2+30*X*Y^5*Z+165*X^2*Y^2*Z^2+126*X*Y^4*Z+60*X*Y^3*Z+264*X*Y^2*Z+162*X*Y*Z

Algorithm definition

The algorithm ⟨4×18×27:1290⟩ is the (Kronecker) tensor product of ⟨2×3×3:15⟩ with ⟨2×6×9:86⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table