Description of fast matrix multiplication algorithm: ⟨4×18×24:1120⟩

Algorithm type

4XY15Z+12X4Y8Z4+12X2Y12Z2+4X2Y12Z+4X4Y8Z2+4X2Y10Z2+32XY12Z+52X4Y4Z4+32X2Y8Z2+36XY9Z+88X2Y6Z2+52X2Y4Z2+16XY6Z+12X2Y4Z+12XY5Z+224X2Y2Z2+96XY4Z+176XY3Z+48XY2Z+204XYZ4XY15Z12X4Y8Z412X2Y12Z24X2Y12Z4X4Y8Z24X2Y10Z232XY12Z52X4Y4Z432X2Y8Z236XY9Z88X2Y6Z252X2Y4Z216XY6Z12X2Y4Z12XY5Z224X2Y2Z296XY4Z176XY3Z48XY2Z204XYZ4*X*Y^15*Z+12*X^4*Y^8*Z^4+12*X^2*Y^12*Z^2+4*X^2*Y^12*Z+4*X^4*Y^8*Z^2+4*X^2*Y^10*Z^2+32*X*Y^12*Z+52*X^4*Y^4*Z^4+32*X^2*Y^8*Z^2+36*X*Y^9*Z+88*X^2*Y^6*Z^2+52*X^2*Y^4*Z^2+16*X*Y^6*Z+12*X^2*Y^4*Z+12*X*Y^5*Z+224*X^2*Y^2*Z^2+96*X*Y^4*Z+176*X*Y^3*Z+48*X*Y^2*Z+204*X*Y*Z

Algorithm definition

The algorithm ⟨4×18×24:1120⟩ is the (Kronecker) tensor product of ⟨2×3×4:20⟩ with ⟨2×6×6:56⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table