Description of fast matrix multiplication algorithm: ⟨4×18×21:990⟩

Algorithm type

15X4Y8Z4+9X2Y12Z2+12X2Y10Z2+18XY12Z+39X4Y4Z4+57X2Y8Z2+24XY10Z+6X4Y2Z4+21X2Y6Z2+54XY8Z+126X2Y4Z2+60XY6Z+24XY5Z+141X2Y2Z2+90XY4Z+12X2YZ2+42XY3Z+138XY2Z+102XYZ15X4Y8Z49X2Y12Z212X2Y10Z218XY12Z39X4Y4Z457X2Y8Z224XY10Z6X4Y2Z421X2Y6Z254XY8Z126X2Y4Z260XY6Z24XY5Z141X2Y2Z290XY4Z12X2YZ242XY3Z138XY2Z102XYZ15*X^4*Y^8*Z^4+9*X^2*Y^12*Z^2+12*X^2*Y^10*Z^2+18*X*Y^12*Z+39*X^4*Y^4*Z^4+57*X^2*Y^8*Z^2+24*X*Y^10*Z+6*X^4*Y^2*Z^4+21*X^2*Y^6*Z^2+54*X*Y^8*Z+126*X^2*Y^4*Z^2+60*X*Y^6*Z+24*X*Y^5*Z+141*X^2*Y^2*Z^2+90*X*Y^4*Z+12*X^2*Y*Z^2+42*X*Y^3*Z+138*X*Y^2*Z+102*X*Y*Z

Algorithm definition

The algorithm ⟨4×18×21:990⟩ is the (Kronecker) tensor product of ⟨2×3×3:15⟩ with ⟨2×6×7:66⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table