Description of fast matrix multiplication algorithm: ⟨4×18×21:1004⟩

Algorithm type

9X4Y6Z4+3X2Y10Z2+42X4Y4Z4+21X2Y8Z2+6XY10Z+36X2Y6Z2+42XY8Z+111X2Y4Z2+36XY6Z+18X2Y3Z2+6XY5Z+166X2Y2Z2+96XY4Z+2X3YZ+2X2YZ2+37XY3Z+2XYZ3+4X2YZ+204XY2Z+4XYZ2+157XYZ9X4Y6Z43X2Y10Z242X4Y4Z421X2Y8Z26XY10Z36X2Y6Z242XY8Z111X2Y4Z236XY6Z18X2Y3Z26XY5Z166X2Y2Z296XY4Z2X3YZ2X2YZ237XY3Z2XYZ34X2YZ204XY2Z4XYZ2157XYZ9*X^4*Y^6*Z^4+3*X^2*Y^10*Z^2+42*X^4*Y^4*Z^4+21*X^2*Y^8*Z^2+6*X*Y^10*Z+36*X^2*Y^6*Z^2+42*X*Y^8*Z+111*X^2*Y^4*Z^2+36*X*Y^6*Z+18*X^2*Y^3*Z^2+6*X*Y^5*Z+166*X^2*Y^2*Z^2+96*X*Y^4*Z+2*X^3*Y*Z+2*X^2*Y*Z^2+37*X*Y^3*Z+2*X*Y*Z^3+4*X^2*Y*Z+204*X*Y^2*Z+4*X*Y*Z^2+157*X*Y*Z

Algorithm definition

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table