Description of fast matrix multiplication algorithm: ⟨4×18×18:840⟩

Algorithm type

9X4Y8Z4+3X4Y8Z2+3X2Y10Z2+39X4Y4Z4+42X2Y8Z2+6XY10Z+6X2Y8Z+27X2Y6Z2+48XY8Z+108X2Y4Z2+54XY6Z+6X2Y4Z+6XY5Z+129X2Y2Z2+72XY4Z+54XY3Z+126XY2Z+102XYZ9X4Y8Z43X4Y8Z23X2Y10Z239X4Y4Z442X2Y8Z26XY10Z6X2Y8Z27X2Y6Z248XY8Z108X2Y4Z254XY6Z6X2Y4Z6XY5Z129X2Y2Z272XY4Z54XY3Z126XY2Z102XYZ9*X^4*Y^8*Z^4+3*X^4*Y^8*Z^2+3*X^2*Y^10*Z^2+39*X^4*Y^4*Z^4+42*X^2*Y^8*Z^2+6*X*Y^10*Z+6*X^2*Y^8*Z+27*X^2*Y^6*Z^2+48*X*Y^8*Z+108*X^2*Y^4*Z^2+54*X*Y^6*Z+6*X^2*Y^4*Z+6*X*Y^5*Z+129*X^2*Y^2*Z^2+72*X*Y^4*Z+54*X*Y^3*Z+126*X*Y^2*Z+102*X*Y*Z

Algorithm definition

The algorithm ⟨4×18×18:840⟩ is the (Kronecker) tensor product of ⟨2×3×3:15⟩ with ⟨2×6×6:56⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table