Description of fast matrix multiplication algorithm: ⟨4×16×18:772⟩

Algorithm type

4X4Y8Z4+4X2Y12Z2+16X4Y6Z4+16XY12Z+16X2Y9Z2+16X4Y4Z4+16X2Y8Z2+32XY9Z+48X2Y6Z2+4X2Y5Z2+40X2Y4Z2+36XY6Z+36X2Y3Z2+12XY5Z+108X2Y2Z2+52XY4Z+112XY3Z+52XY2Z+152XYZ4X4Y8Z44X2Y12Z216X4Y6Z416XY12Z16X2Y9Z216X4Y4Z416X2Y8Z232XY9Z48X2Y6Z24X2Y5Z240X2Y4Z236XY6Z36X2Y3Z212XY5Z108X2Y2Z252XY4Z112XY3Z52XY2Z152XYZ4*X^4*Y^8*Z^4+4*X^2*Y^12*Z^2+16*X^4*Y^6*Z^4+16*X*Y^12*Z+16*X^2*Y^9*Z^2+16*X^4*Y^4*Z^4+16*X^2*Y^8*Z^2+32*X*Y^9*Z+48*X^2*Y^6*Z^2+4*X^2*Y^5*Z^2+40*X^2*Y^4*Z^2+36*X*Y^6*Z+36*X^2*Y^3*Z^2+12*X*Y^5*Z+108*X^2*Y^2*Z^2+52*X*Y^4*Z+112*X*Y^3*Z+52*X*Y^2*Z+152*X*Y*Z

Algorithm definition

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table