Description of fast matrix multiplication algorithm: ⟨4×10×32:896⟩

Algorithm type

2X4Y8Z4+16X4Y6Z4+2X2Y10Z2+14X4Y4Z4+20X2Y8Z2+22X2Y6Z2+30X2Y4Z2+96X2Y3Z2+12XY5Z+118X2Y2Z2+120XY4Z+132XY3Z+108XY2Z+204XYZ2X4Y8Z416X4Y6Z42X2Y10Z214X4Y4Z420X2Y8Z222X2Y6Z230X2Y4Z296X2Y3Z212XY5Z118X2Y2Z2120XY4Z132XY3Z108XY2Z204XYZ2*X^4*Y^8*Z^4+16*X^4*Y^6*Z^4+2*X^2*Y^10*Z^2+14*X^4*Y^4*Z^4+20*X^2*Y^8*Z^2+22*X^2*Y^6*Z^2+30*X^2*Y^4*Z^2+96*X^2*Y^3*Z^2+12*X*Y^5*Z+118*X^2*Y^2*Z^2+120*X*Y^4*Z+132*X*Y^3*Z+108*X*Y^2*Z+204*X*Y*Z

Algorithm definition

The algorithm ⟨4×10×32:896⟩ is the (Kronecker) tensor product of ⟨1×1×2:2⟩ with ⟨4×10×16:448⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table