Description of fast matrix multiplication algorithm: ⟨2×6×11:103⟩

Algorithm type

5X2Y4Z2+X2Y4Z+XY5Z+24X2Y2Z2+12XY4Z+17XY3Z+8XY2Z+35XYZ5X2Y4Z2X2Y4ZXY5Z24X2Y2Z212XY4Z17XY3Z8XY2Z35XYZ5*X^2*Y^4*Z^2+X^2*Y^4*Z+X*Y^5*Z+24*X^2*Y^2*Z^2+12*X*Y^4*Z+17*X*Y^3*Z+8*X*Y^2*Z+35*X*Y*Z

Algorithm definition

The algorithm ⟨2×6×11:103⟩ could be constructed using the following decomposition:

⟨2×6×11:103⟩ = ⟨2×6×5:47⟩ + ⟨2×6×6:56⟩.

This decomposition is defined by the following equality:

TraceMulA_1_1A_1_2A_1_3A_1_4A_1_5A_1_6A_2_1A_2_2A_2_3A_2_4A_2_5A_2_6B_1_1B_1_2B_1_3B_1_4B_1_5B_1_6B_1_7B_1_8B_1_9B_1_10B_1_11B_2_1B_2_2B_2_3B_2_4B_2_5B_2_6B_2_7B_2_8B_2_9B_2_10B_2_11B_3_1B_3_2B_3_3B_3_4B_3_5B_3_6B_3_7B_3_8B_3_9B_3_10B_3_11B_4_1B_4_2B_4_3B_4_4B_4_5B_4_6B_4_7B_4_8B_4_9B_4_10B_4_11B_5_1B_5_2B_5_3B_5_4B_5_5B_5_6B_5_7B_5_8B_5_9B_5_10B_5_11B_6_1B_6_2B_6_3B_6_4B_6_5B_6_6B_6_7B_6_8B_6_9B_6_10B_6_11C_1_1C_1_2C_2_1C_2_2C_3_1C_3_2C_4_1C_4_2C_5_1C_5_2C_6_1C_6_2C_7_1C_7_2C_8_1C_8_2C_9_1C_9_2C_10_1C_10_2C_11_1C_11_2=TraceMulA_1_1A_1_2A_1_3A_1_4A_1_5A_1_6A_2_1A_2_2A_2_3A_2_4A_2_5A_2_6B_1_1B_1_2B_1_3B_1_4B_1_5B_2_1B_2_2B_2_3B_2_4B_2_5B_3_1B_3_2B_3_3B_3_4B_3_5B_4_1B_4_2B_4_3B_4_4B_4_5B_5_1B_5_2B_5_3B_5_4B_5_5B_6_1B_6_2B_6_3B_6_4B_6_5C_1_1C_1_2C_2_1C_2_2C_3_1C_3_2C_4_1C_4_2C_5_1C_5_2+TraceMulA_1_1A_1_2A_1_3A_1_4A_1_5A_1_6A_2_1A_2_2A_2_3A_2_4A_2_5A_2_6B_1_6B_1_7B_1_8B_1_9B_1_10B_1_11B_2_6B_2_7B_2_8B_2_9B_2_10B_2_11B_3_6B_3_7B_3_8B_3_9B_3_10B_3_11B_4_6B_4_7B_4_8B_4_9B_4_10B_4_11B_5_6B_5_7B_5_8B_5_9B_5_10B_5_11B_6_6B_6_7B_6_8B_6_9B_6_10B_6_11C_6_1C_6_2C_7_1C_7_2C_8_1C_8_2C_9_1C_9_2C_10_1C_10_2C_11_1C_11_2

N.B.: for any matrices A, B and C such that the expression Tr(Mul(A,B,C)) is defined, one can construct several trilinear homogeneous polynomials P(A,B,C) such that P(A,B,C)=Tr(Mul(A,B,C)) (P(A,B,C) variables are A,B and C's coefficients). Each trilinear P expression encodes a matrix multiplication algorithm: the coefficient in C_i_j of P(A,B,C) is the (i,j)-th entry of the matrix product Mul(A,B)=Transpose(C).

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table