Description of fast matrix multiplication algorithm: ⟨20 × 32 × 32:11270⟩

Algorithm type

[[1, 1, 1]$1836,[1, 1, 2]$108,[1, 1, 3]$324,[1, 2, 1]$1836,[1, 2, 2]$252,[1, 2, 3]$36,[1, 2, 5]$36,[1, 3, 1]$216,[1, 4, 1]$36,[1, 4, 2]$36,[1, 4, 3]$36,[2, 1, 1]$108,[2, 2, 1]$216,[2, 2, 2]$2412,[2, 2, 4]$36,[2, 2, 5]$72,[2, 2, 6]$108,[2, 4, 2]$936,[2, 4, 4]$120,[2, 4, 6]$12,[2, 4, 10]$12,[2, 6, 1]$36,[2, 6, 2]$108,[2, 8, 2]$12,[2, 8, 4]$12,[2, 8, 6]$12,[3, 1, 1]$324,[3, 2, 2]$36,[3, 4, 1]$36,[3, 4, 3]$252,[4, 2, 2]$36,[4, 4, 2]$108,[4, 4, 4]$759,[4, 4, 8]$3,[4, 4, 10]$24,[4, 4, 12]$9,[4, 8, 4]$159,[4, 8, 8]$19,[4, 8, 12]$1,[4, 8, 20]$1,[4, 12, 2]$12,[4, 12, 4]$18,[4, 16, 4]$1,[4, 16, 8]$1,[4, 16, 12]$1,[5, 2, 1]$36,[5, 2, 2]$72,[6, 2, 2]$108,[6, 4, 4]$12,[6, 8, 2]$12,[6, 8, 6]$84,[8, 4, 4]$3,[8, 8, 4]$18,[8, 8, 8]$86,[8, 8, 20]$2,[8, 16, 8]$9,[8, 16, 16]$1,[8, 24, 4]$1,[8, 24, 8]$1,[10, 4, 2]$12,[10, 4, 4]$24,[12, 4, 4]$9,[12, 8, 8]$1,[12, 16, 4]$1,[12, 16, 12]$7,[16, 16, 8]$1,[16, 16, 16]$3,[20, 8, 4]$1,[20, 8, 8]$2]

Algorithm definition

The algorithm ⟨20 × 32 × 32:11270⟩ is the (Kronecker) tensor product of ⟨2 × 2 × 2:7⟩ with ⟨10 × 16 × 16:1610⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table