Description of fast matrix multiplication algorithm: ⟨10×16×16:1586⟩

Algorithm type

36X4Y6Z4+6X4Y4Z6+6X4Y2Z8+12X2Y9Z2+12X4Y6Z2+54X4Y4Z4+6X4Y2Z6+4X2Y9Z+12X2Y4Z6+2X2Y6Z3+16XY9Z+12X6Y2Z2+24X4Y2Z4+114X2Y6Z2+24X2Y4Z4+4XY6Z3+16X2Y6Z+8X2Y4Z3+2X2Y3Z4+8XY6Z2+12X4Y2Z2+132X2Y4Z2+2X2Y3Z3+8X2Y2Z4+84XY6Z+16XY4Z3+4X3Y3Z+68X2Y3Z2+18X2Y2Z3+10X2YZ4+32XY4Z2+16X3Y2Z+24X2Y3Z+176X2Y2Z2+10X2YZ3+80XY4Z+20XY2Z3+20X3YZ+16X2Y2Z+40X2YZ2+98XY3Z+40XY2Z2+20X2YZ+172XY2Z+90XYZ36X4Y6Z46X4Y4Z66X4Y2Z812X2Y9Z212X4Y6Z254X4Y4Z46X4Y2Z64X2Y9Z12X2Y4Z62X2Y6Z316XY9Z12X6Y2Z224X4Y2Z4114X2Y6Z224X2Y4Z44XY6Z316X2Y6Z8X2Y4Z32X2Y3Z48XY6Z212X4Y2Z2132X2Y4Z22X2Y3Z38X2Y2Z484XY6Z16XY4Z34X3Y3Z68X2Y3Z218X2Y2Z310X2YZ432XY4Z216X3Y2Z24X2Y3Z176X2Y2Z210X2YZ380XY4Z20XY2Z320X3YZ16X2Y2Z40X2YZ298XY3Z40XY2Z220X2YZ172XY2Z90XYZ36*X^4*Y^6*Z^4+6*X^4*Y^4*Z^6+6*X^4*Y^2*Z^8+12*X^2*Y^9*Z^2+12*X^4*Y^6*Z^2+54*X^4*Y^4*Z^4+6*X^4*Y^2*Z^6+4*X^2*Y^9*Z+12*X^2*Y^4*Z^6+2*X^2*Y^6*Z^3+16*X*Y^9*Z+12*X^6*Y^2*Z^2+24*X^4*Y^2*Z^4+114*X^2*Y^6*Z^2+24*X^2*Y^4*Z^4+4*X*Y^6*Z^3+16*X^2*Y^6*Z+8*X^2*Y^4*Z^3+2*X^2*Y^3*Z^4+8*X*Y^6*Z^2+12*X^4*Y^2*Z^2+132*X^2*Y^4*Z^2+2*X^2*Y^3*Z^3+8*X^2*Y^2*Z^4+84*X*Y^6*Z+16*X*Y^4*Z^3+4*X^3*Y^3*Z+68*X^2*Y^3*Z^2+18*X^2*Y^2*Z^3+10*X^2*Y*Z^4+32*X*Y^4*Z^2+16*X^3*Y^2*Z+24*X^2*Y^3*Z+176*X^2*Y^2*Z^2+10*X^2*Y*Z^3+80*X*Y^4*Z+20*X*Y^2*Z^3+20*X^3*Y*Z+16*X^2*Y^2*Z+40*X^2*Y*Z^2+98*X*Y^3*Z+40*X*Y^2*Z^2+20*X^2*Y*Z+172*X*Y^2*Z+90*X*Y*Z

Algorithm definition

The algorithm ⟨10×16×16:1586⟩ is the (Kronecker) tensor product of ⟨2×4×4:26⟩ with ⟨5×4×4:61⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table