Description of fast matrix multiplication algorithm: ⟨10×16×16:1610⟩

Algorithm type

3X8Y8Z8+X8Y8Z4+7X6Y8Z6+X4Y12Z4+X4Y8Z8+2X10Y4Z4+2X4Y4Z10+X2Y12Z4+X10Y4Z2+X6Y8Z2+9X4Y8Z4+X2Y8Z6+X2Y4Z10+X4Y8Z2+X4Y4Z6+X6Y4Z2+68X4Y4Z4+X2Y8Z2+9X6Y2Z2+13X4Y4Z2+42X3Y4Z3+18X2Y6Z2+12X2Y4Z4+9X2Y2Z6+12X5Y2Z2+12X2Y2Z5+6XY6Z2+6X5Y2Z+3X4Y2Z2+6X3Y4Z+111X2Y4Z2+3X2Y2Z4+6XY4Z3+6XY2Z5+6X2Y4Z+6X2Y2Z3+6X3Y2Z+339X2Y2Z2+6XY4Z+54X3YZ+42X2Y2Z+72XY3Z+36XY2Z2+54XYZ3+18X2YZ+342XY2Z+18XYZ2+234XYZ3X8Y8Z8X8Y8Z47X6Y8Z6X4Y12Z4X4Y8Z82X10Y4Z42X4Y4Z10X2Y12Z4X10Y4Z2X6Y8Z29X4Y8Z4X2Y8Z6X2Y4Z10X4Y8Z2X4Y4Z6X6Y4Z268X4Y4Z4X2Y8Z29X6Y2Z213X4Y4Z242X3Y4Z318X2Y6Z212X2Y4Z49X2Y2Z612X5Y2Z212X2Y2Z56XY6Z26X5Y2Z3X4Y2Z26X3Y4Z111X2Y4Z23X2Y2Z46XY4Z36XY2Z56X2Y4Z6X2Y2Z36X3Y2Z339X2Y2Z26XY4Z54X3YZ42X2Y2Z72XY3Z36XY2Z254XYZ318X2YZ342XY2Z18XYZ2234XYZ3*X^8*Y^8*Z^8+X^8*Y^8*Z^4+7*X^6*Y^8*Z^6+X^4*Y^12*Z^4+X^4*Y^8*Z^8+2*X^10*Y^4*Z^4+2*X^4*Y^4*Z^10+X^2*Y^12*Z^4+X^10*Y^4*Z^2+X^6*Y^8*Z^2+9*X^4*Y^8*Z^4+X^2*Y^8*Z^6+X^2*Y^4*Z^10+X^4*Y^8*Z^2+X^4*Y^4*Z^6+X^6*Y^4*Z^2+68*X^4*Y^4*Z^4+X^2*Y^8*Z^2+9*X^6*Y^2*Z^2+13*X^4*Y^4*Z^2+42*X^3*Y^4*Z^3+18*X^2*Y^6*Z^2+12*X^2*Y^4*Z^4+9*X^2*Y^2*Z^6+12*X^5*Y^2*Z^2+12*X^2*Y^2*Z^5+6*X*Y^6*Z^2+6*X^5*Y^2*Z+3*X^4*Y^2*Z^2+6*X^3*Y^4*Z+111*X^2*Y^4*Z^2+3*X^2*Y^2*Z^4+6*X*Y^4*Z^3+6*X*Y^2*Z^5+6*X^2*Y^4*Z+6*X^2*Y^2*Z^3+6*X^3*Y^2*Z+339*X^2*Y^2*Z^2+6*X*Y^4*Z+54*X^3*Y*Z+42*X^2*Y^2*Z+72*X*Y^3*Z+36*X*Y^2*Z^2+54*X*Y*Z^3+18*X^2*Y*Z+342*X*Y^2*Z+18*X*Y*Z^2+234*X*Y*Z

Algorithm definition

The algorithm ⟨10×16×16:1610⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨5×8×8:230⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table