Description of fast matrix multiplication algorithm: ⟨20×24×30:7980⟩

Algorithm type

3X8Y8Z12+12X16Y4Z4+69X8Y8Z8+12X4Y16Z4+24X4Y8Z8+39X4Y4Z12+24X2Y16Z2+6X4Y8Z6+150X4Y8Z4+12X4Y4Z8+24X8Y4Z2+24X4Y4Z6+48X2Y8Z4+96X8Y2Z2+597X4Y4Z4+120X2Y8Z2+78X2Y4Z6+216X2Y4Z4+312X2Y2Z6+144XY8Z+36X2Y4Z3+1014X2Y4Z2+96X2Y2Z4+144X4Y2Z+36X2Y2Z3+288XY4Z2+144X4YZ+1188X2Y2Z2+288XY4Z+468XY2Z3+432XY2Z2+468XYZ3+684XY2Z+144XYZ2+540XYZ3X8Y8Z1212X16Y4Z469X8Y8Z812X4Y16Z424X4Y8Z839X4Y4Z1224X2Y16Z26X4Y8Z6150X4Y8Z412X4Y4Z824X8Y4Z224X4Y4Z648X2Y8Z496X8Y2Z2597X4Y4Z4120X2Y8Z278X2Y4Z6216X2Y4Z4312X2Y2Z6144XY8Z36X2Y4Z31014X2Y4Z296X2Y2Z4144X4Y2Z36X2Y2Z3288XY4Z2144X4YZ1188X2Y2Z2288XY4Z468XY2Z3432XY2Z2468XYZ3684XY2Z144XYZ2540XYZ3*X^8*Y^8*Z^12+12*X^16*Y^4*Z^4+69*X^8*Y^8*Z^8+12*X^4*Y^16*Z^4+24*X^4*Y^8*Z^8+39*X^4*Y^4*Z^12+24*X^2*Y^16*Z^2+6*X^4*Y^8*Z^6+150*X^4*Y^8*Z^4+12*X^4*Y^4*Z^8+24*X^8*Y^4*Z^2+24*X^4*Y^4*Z^6+48*X^2*Y^8*Z^4+96*X^8*Y^2*Z^2+597*X^4*Y^4*Z^4+120*X^2*Y^8*Z^2+78*X^2*Y^4*Z^6+216*X^2*Y^4*Z^4+312*X^2*Y^2*Z^6+144*X*Y^8*Z+36*X^2*Y^4*Z^3+1014*X^2*Y^4*Z^2+96*X^2*Y^2*Z^4+144*X^4*Y^2*Z+36*X^2*Y^2*Z^3+288*X*Y^4*Z^2+144*X^4*Y*Z+1188*X^2*Y^2*Z^2+288*X*Y^4*Z+468*X*Y^2*Z^3+432*X*Y^2*Z^2+468*X*Y*Z^3+684*X*Y^2*Z+144*X*Y*Z^2+540*X*Y*Z

Algorithm definition

The algorithm ⟨20×24×30:7980⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨10×12×15:1140⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table