Description of fast matrix multiplication algorithm: ⟨10×12×15:1140⟩

Algorithm type

3X4Y4Z6+12X8Y2Z2+69X4Y4Z4+12X2Y8Z2+24X2Y4Z4+39X2Y2Z6+24XY8Z+6X2Y4Z3+150X2Y4Z2+12X2Y2Z4+24X4Y2Z+6X2Y2Z3+48XY4Z2+24X4YZ+183X2Y2Z2+48XY4Z+78XY2Z3+72XY2Z2+78XYZ3+114XY2Z+24XYZ2+90XYZ3X4Y4Z612X8Y2Z269X4Y4Z412X2Y8Z224X2Y4Z439X2Y2Z624XY8Z6X2Y4Z3150X2Y4Z212X2Y2Z424X4Y2Z6X2Y2Z348XY4Z224X4YZ183X2Y2Z248XY4Z78XY2Z372XY2Z278XYZ3114XY2Z24XYZ290XYZ3*X^4*Y^4*Z^6+12*X^8*Y^2*Z^2+69*X^4*Y^4*Z^4+12*X^2*Y^8*Z^2+24*X^2*Y^4*Z^4+39*X^2*Y^2*Z^6+24*X*Y^8*Z+6*X^2*Y^4*Z^3+150*X^2*Y^4*Z^2+12*X^2*Y^2*Z^4+24*X^4*Y^2*Z+6*X^2*Y^2*Z^3+48*X*Y^4*Z^2+24*X^4*Y*Z+183*X^2*Y^2*Z^2+48*X*Y^4*Z+78*X*Y^2*Z^3+72*X*Y^2*Z^2+78*X*Y*Z^3+114*X*Y^2*Z+24*X*Y*Z^2+90*X*Y*Z

Algorithm definition

The algorithm ⟨10×12×15:1140⟩ is the (Kronecker) tensor product of ⟨2×3×3:15⟩ with ⟨5×4×5:76⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table