Description of fast matrix multiplication algorithm: ⟨20×24×28:7588⟩

Algorithm type

2X8Y16Z8+3X8Y8Z12+10X16Y4Z4+53X8Y8Z8+6X4Y16Z4+2X16Y4Z2+6X8Y6Z8+6X4Y14Z4+12X8Y6Z6+20X4Y8Z8+27X4Y4Z12+10X2Y16Z2+2X6Y8Z4+4X4Y8Z6+6X4Y4Z10+6X2Y14Z2+124X4Y8Z4+4X4Y6Z6+10X4Y4Z8+6X4Y2Z10+16X8Y4Z2+2X6Y4Z4+2X4Y8Z2+20X4Y6Z4+24X4Y4Z6+32X2Y8Z4+76X8Y2Z2+4X6Y4Z2+475X4Y4Z4+72X2Y8Z2+4X2Y6Z4+48X2Y4Z6+12X8Y2Z+36X4Y3Z4+36X2Y7Z2+4X6Y2Z2+18X4Y4Z2+72X4Y3Z3+6X4Y2Z4+2X2Y6Z2+176X2Y4Z4+222X2Y2Z6+60XY8Z+12X3Y4Z2+24X2Y4Z3+36X2Y2Z5+36XY7Z+18X4Y2Z2+800X2Y4Z2+24X2Y3Z3+80X2Y2Z4+36X2YZ5+96X4Y2Z+12X3Y2Z2+12X2Y4Z+120X2Y3Z2+36X2Y2Z3+192XY4Z2+96X4YZ+24X3Y2Z+1064X2Y2Z2+216XY4Z+24XY3Z2+288XY2Z3+24X3YZ+108X2Y2Z+36X2YZ2+12XY3Z+336XY2Z2+360XYZ3+108X2YZ+768XY2Z+120XYZ2+732XYZ2X8Y16Z83X8Y8Z1210X16Y4Z453X8Y8Z86X4Y16Z42X16Y4Z26X8Y6Z86X4Y14Z412X8Y6Z620X4Y8Z827X4Y4Z1210X2Y16Z22X6Y8Z44X4Y8Z66X4Y4Z106X2Y14Z2124X4Y8Z44X4Y6Z610X4Y4Z86X4Y2Z1016X8Y4Z22X6Y4Z42X4Y8Z220X4Y6Z424X4Y4Z632X2Y8Z476X8Y2Z24X6Y4Z2475X4Y4Z472X2Y8Z24X2Y6Z448X2Y4Z612X8Y2Z36X4Y3Z436X2Y7Z24X6Y2Z218X4Y4Z272X4Y3Z36X4Y2Z42X2Y6Z2176X2Y4Z4222X2Y2Z660XY8Z12X3Y4Z224X2Y4Z336X2Y2Z536XY7Z18X4Y2Z2800X2Y4Z224X2Y3Z380X2Y2Z436X2YZ596X4Y2Z12X3Y2Z212X2Y4Z120X2Y3Z236X2Y2Z3192XY4Z296X4YZ24X3Y2Z1064X2Y2Z2216XY4Z24XY3Z2288XY2Z324X3YZ108X2Y2Z36X2YZ212XY3Z336XY2Z2360XYZ3108X2YZ768XY2Z120XYZ2732XYZ2*X^8*Y^16*Z^8+3*X^8*Y^8*Z^12+10*X^16*Y^4*Z^4+53*X^8*Y^8*Z^8+6*X^4*Y^16*Z^4+2*X^16*Y^4*Z^2+6*X^8*Y^6*Z^8+6*X^4*Y^14*Z^4+12*X^8*Y^6*Z^6+20*X^4*Y^8*Z^8+27*X^4*Y^4*Z^12+10*X^2*Y^16*Z^2+2*X^6*Y^8*Z^4+4*X^4*Y^8*Z^6+6*X^4*Y^4*Z^10+6*X^2*Y^14*Z^2+124*X^4*Y^8*Z^4+4*X^4*Y^6*Z^6+10*X^4*Y^4*Z^8+6*X^4*Y^2*Z^10+16*X^8*Y^4*Z^2+2*X^6*Y^4*Z^4+2*X^4*Y^8*Z^2+20*X^4*Y^6*Z^4+24*X^4*Y^4*Z^6+32*X^2*Y^8*Z^4+76*X^8*Y^2*Z^2+4*X^6*Y^4*Z^2+475*X^4*Y^4*Z^4+72*X^2*Y^8*Z^2+4*X^2*Y^6*Z^4+48*X^2*Y^4*Z^6+12*X^8*Y^2*Z+36*X^4*Y^3*Z^4+36*X^2*Y^7*Z^2+4*X^6*Y^2*Z^2+18*X^4*Y^4*Z^2+72*X^4*Y^3*Z^3+6*X^4*Y^2*Z^4+2*X^2*Y^6*Z^2+176*X^2*Y^4*Z^4+222*X^2*Y^2*Z^6+60*X*Y^8*Z+12*X^3*Y^4*Z^2+24*X^2*Y^4*Z^3+36*X^2*Y^2*Z^5+36*X*Y^7*Z+18*X^4*Y^2*Z^2+800*X^2*Y^4*Z^2+24*X^2*Y^3*Z^3+80*X^2*Y^2*Z^4+36*X^2*Y*Z^5+96*X^4*Y^2*Z+12*X^3*Y^2*Z^2+12*X^2*Y^4*Z+120*X^2*Y^3*Z^2+36*X^2*Y^2*Z^3+192*X*Y^4*Z^2+96*X^4*Y*Z+24*X^3*Y^2*Z+1064*X^2*Y^2*Z^2+216*X*Y^4*Z+24*X*Y^3*Z^2+288*X*Y^2*Z^3+24*X^3*Y*Z+108*X^2*Y^2*Z+36*X^2*Y*Z^2+12*X*Y^3*Z+336*X*Y^2*Z^2+360*X*Y*Z^3+108*X^2*Y*Z+768*X*Y^2*Z+120*X*Y*Z^2+732*X*Y*Z

Algorithm definition

The algorithm ⟨20×24×28:7588⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨10×12×14:1084⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table