Description of fast matrix multiplication algorithm: ⟨10×12×14:1050⟩

Algorithm type

X6Y4Z4+59X4Y4Z4+2X6Y2Z2+2X4Y4Z2+X4Y2Z4+16X4Y2Z2+27X2Y4Z2+20X2Y2Z4+6X3Y2Z2+376X2Y2Z2+12X3YZ+12X2Y2Z+6X2YZ2+96X2YZ+162XY2Z+120XYZ2+132XYZX6Y4Z459X4Y4Z42X6Y2Z22X4Y4Z2X4Y2Z416X4Y2Z227X2Y4Z220X2Y2Z46X3Y2Z2376X2Y2Z212X3YZ12X2Y2Z6X2YZ296X2YZ162XY2Z120XYZ2132XYZX^6*Y^4*Z^4+59*X^4*Y^4*Z^4+2*X^6*Y^2*Z^2+2*X^4*Y^4*Z^2+X^4*Y^2*Z^4+16*X^4*Y^2*Z^2+27*X^2*Y^4*Z^2+20*X^2*Y^2*Z^4+6*X^3*Y^2*Z^2+376*X^2*Y^2*Z^2+12*X^3*Y*Z+12*X^2*Y^2*Z+6*X^2*Y*Z^2+96*X^2*Y*Z+162*X*Y^2*Z+120*X*Y*Z^2+132*X*Y*Z

Algorithm definition

The algorithm ⟨10×12×14:1050⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨5×6×7:150⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table