Description of fast matrix multiplication algorithm: ⟨18×20×32:6580⟩

Algorithm type

52X8Y8Z8+12X2Y2Z18+16X12Y4Z4+8X8Y8Z4+8X4Y12Z4+4X4Y8Z8+64X4Y4Z12+4X2Y4Z12+24X8Y4Z4+32X4Y8Z4+12X4Y4Z8+12X2Y2Z12+16X6Y2Z6+8X4Y4Z6+8X2Y6Z6+488X4Y4Z4+24X4Y2Z6+32X2Y4Z6+72XYZ9+144X6Y2Z2+72X4Y4Z2+72X2Y6Z2+36X2Y4Z4+440X2Y2Z6+24XY2Z6+216X4Y2Z2+288X2Y4Z2+108X2Y2Z4+72XYZ6+96X3YZ3+48X2Y2Z3+48XY3Z3+1116X2Y2Z2+144X2YZ3+192XY2Z3+288X3YZ+144X2Y2Z+144XY3Z+72XY2Z2+336XYZ3+432X2YZ+576XY2Z+216XYZ2+360XYZ52X8Y8Z812X2Y2Z1816X12Y4Z48X8Y8Z48X4Y12Z44X4Y8Z864X4Y4Z124X2Y4Z1224X8Y4Z432X4Y8Z412X4Y4Z812X2Y2Z1216X6Y2Z68X4Y4Z68X2Y6Z6488X4Y4Z424X4Y2Z632X2Y4Z672XYZ9144X6Y2Z272X4Y4Z272X2Y6Z236X2Y4Z4440X2Y2Z624XY2Z6216X4Y2Z2288X2Y4Z2108X2Y2Z472XYZ696X3YZ348X2Y2Z348XY3Z31116X2Y2Z2144X2YZ3192XY2Z3288X3YZ144X2Y2Z144XY3Z72XY2Z2336XYZ3432X2YZ576XY2Z216XYZ2360XYZ52*X^8*Y^8*Z^8+12*X^2*Y^2*Z^18+16*X^12*Y^4*Z^4+8*X^8*Y^8*Z^4+8*X^4*Y^12*Z^4+4*X^4*Y^8*Z^8+64*X^4*Y^4*Z^12+4*X^2*Y^4*Z^12+24*X^8*Y^4*Z^4+32*X^4*Y^8*Z^4+12*X^4*Y^4*Z^8+12*X^2*Y^2*Z^12+16*X^6*Y^2*Z^6+8*X^4*Y^4*Z^6+8*X^2*Y^6*Z^6+488*X^4*Y^4*Z^4+24*X^4*Y^2*Z^6+32*X^2*Y^4*Z^6+72*X*Y*Z^9+144*X^6*Y^2*Z^2+72*X^4*Y^4*Z^2+72*X^2*Y^6*Z^2+36*X^2*Y^4*Z^4+440*X^2*Y^2*Z^6+24*X*Y^2*Z^6+216*X^4*Y^2*Z^2+288*X^2*Y^4*Z^2+108*X^2*Y^2*Z^4+72*X*Y*Z^6+96*X^3*Y*Z^3+48*X^2*Y^2*Z^3+48*X*Y^3*Z^3+1116*X^2*Y^2*Z^2+144*X^2*Y*Z^3+192*X*Y^2*Z^3+288*X^3*Y*Z+144*X^2*Y^2*Z+144*X*Y^3*Z+72*X*Y^2*Z^2+336*X*Y*Z^3+432*X^2*Y*Z+576*X*Y^2*Z+216*X*Y*Z^2+360*X*Y*Z

Algorithm definition

The algorithm ⟨18×20×32:6580⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨9×10×16:940⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table