Description of fast matrix multiplication algorithm: ⟨9×10×16:940⟩

Algorithm type

52X4Y4Z4+12XYZ9+16X6Y2Z2+8X4Y4Z2+8X2Y6Z2+4X2Y4Z4+64X2Y2Z6+4XY2Z6+24X4Y2Z2+32X2Y4Z2+12X2Y2Z4+12XYZ6+16X3YZ3+8X2Y2Z3+8XY3Z3+176X2Y2Z2+24X2YZ3+32XY2Z3+48X3YZ+24X2Y2Z+24XY3Z+12XY2Z2+56XYZ3+72X2YZ+96XY2Z+36XYZ2+60XYZ52X4Y4Z412XYZ916X6Y2Z28X4Y4Z28X2Y6Z24X2Y4Z464X2Y2Z64XY2Z624X4Y2Z232X2Y4Z212X2Y2Z412XYZ616X3YZ38X2Y2Z38XY3Z3176X2Y2Z224X2YZ332XY2Z348X3YZ24X2Y2Z24XY3Z12XY2Z256XYZ372X2YZ96XY2Z36XYZ260XYZ52*X^4*Y^4*Z^4+12*X*Y*Z^9+16*X^6*Y^2*Z^2+8*X^4*Y^4*Z^2+8*X^2*Y^6*Z^2+4*X^2*Y^4*Z^4+64*X^2*Y^2*Z^6+4*X*Y^2*Z^6+24*X^4*Y^2*Z^2+32*X^2*Y^4*Z^2+12*X^2*Y^2*Z^4+12*X*Y*Z^6+16*X^3*Y*Z^3+8*X^2*Y^2*Z^3+8*X*Y^3*Z^3+176*X^2*Y^2*Z^2+24*X^2*Y*Z^3+32*X*Y^2*Z^3+48*X^3*Y*Z+24*X^2*Y^2*Z+24*X*Y^3*Z+12*X*Y^2*Z^2+56*X*Y*Z^3+72*X^2*Y*Z+96*X*Y^2*Z+36*X*Y*Z^2+60*X*Y*Z

Algorithm definition

The algorithm ⟨9×10×16:940⟩ is the (Kronecker) tensor product of ⟨3×2×4:20⟩ with ⟨3×5×4:47⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table