Description of fast matrix multiplication algorithm: ⟨18×20×30:6090⟩

Algorithm type

3X12Y8Z4+51X8Y8Z8+6X4Y16Z4+3X4Y8Z12+15X12Y4Z4+6X8Y8Z4+3X4Y12Z4+6X4Y8Z8+15X4Y4Z12+6X2Y4Z12+3X8Y4Z4+39X4Y8Z4+105X4Y4Z8+30X2Y2Z12+6X6Y4Z4+12X2Y8Z4+12X2Y4Z8+24X6Y4Z2+30X6Y2Z4+441X4Y4Z4+48X2Y8Z2+6X2Y6Z4+24X2Y4Z6+6X2Y2Z8+120X6Y2Z2+48X4Y4Z2+6X4Y2Z4+24X2Y6Z2+126X2Y4Z4+120X2Y2Z6+36XY2Z6+24X4Y2Z2+312X2Y4Z2+678X2Y2Z4+180XYZ6+36X3Y2Z2+72XY4Z2+72XY2Z4+36X3Y2Z+180X3YZ2+852X2Y2Z2+72XY4Z+36XY3Z2+36XY2Z3+36XYZ4+180X3YZ+72X2Y2Z+36X2YZ2+36XY3Z+540XY2Z2+180XYZ3+36X2YZ+468XY2Z+288XYZ2+252XYZ3X12Y8Z451X8Y8Z86X4Y16Z43X4Y8Z1215X12Y4Z46X8Y8Z43X4Y12Z46X4Y8Z815X4Y4Z126X2Y4Z123X8Y4Z439X4Y8Z4105X4Y4Z830X2Y2Z126X6Y4Z412X2Y8Z412X2Y4Z824X6Y4Z230X6Y2Z4441X4Y4Z448X2Y8Z26X2Y6Z424X2Y4Z66X2Y2Z8120X6Y2Z248X4Y4Z26X4Y2Z424X2Y6Z2126X2Y4Z4120X2Y2Z636XY2Z624X4Y2Z2312X2Y4Z2678X2Y2Z4180XYZ636X3Y2Z272XY4Z272XY2Z436X3Y2Z180X3YZ2852X2Y2Z272XY4Z36XY3Z236XY2Z336XYZ4180X3YZ72X2Y2Z36X2YZ236XY3Z540XY2Z2180XYZ336X2YZ468XY2Z288XYZ2252XYZ3*X^12*Y^8*Z^4+51*X^8*Y^8*Z^8+6*X^4*Y^16*Z^4+3*X^4*Y^8*Z^12+15*X^12*Y^4*Z^4+6*X^8*Y^8*Z^4+3*X^4*Y^12*Z^4+6*X^4*Y^8*Z^8+15*X^4*Y^4*Z^12+6*X^2*Y^4*Z^12+3*X^8*Y^4*Z^4+39*X^4*Y^8*Z^4+105*X^4*Y^4*Z^8+30*X^2*Y^2*Z^12+6*X^6*Y^4*Z^4+12*X^2*Y^8*Z^4+12*X^2*Y^4*Z^8+24*X^6*Y^4*Z^2+30*X^6*Y^2*Z^4+441*X^4*Y^4*Z^4+48*X^2*Y^8*Z^2+6*X^2*Y^6*Z^4+24*X^2*Y^4*Z^6+6*X^2*Y^2*Z^8+120*X^6*Y^2*Z^2+48*X^4*Y^4*Z^2+6*X^4*Y^2*Z^4+24*X^2*Y^6*Z^2+126*X^2*Y^4*Z^4+120*X^2*Y^2*Z^6+36*X*Y^2*Z^6+24*X^4*Y^2*Z^2+312*X^2*Y^4*Z^2+678*X^2*Y^2*Z^4+180*X*Y*Z^6+36*X^3*Y^2*Z^2+72*X*Y^4*Z^2+72*X*Y^2*Z^4+36*X^3*Y^2*Z+180*X^3*Y*Z^2+852*X^2*Y^2*Z^2+72*X*Y^4*Z+36*X*Y^3*Z^2+36*X*Y^2*Z^3+36*X*Y*Z^4+180*X^3*Y*Z+72*X^2*Y^2*Z+36*X^2*Y*Z^2+36*X*Y^3*Z+540*X*Y^2*Z^2+180*X*Y*Z^3+36*X^2*Y*Z+468*X*Y^2*Z+288*X*Y*Z^2+252*X*Y*Z

Algorithm definition

The algorithm ⟨18×20×30:6090⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨9×10×15:870⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table