Description of fast matrix multiplication algorithm: ⟨9×10×15:870⟩

Algorithm type

3X6Y4Z2+51X4Y4Z4+6X2Y8Z2+3X2Y4Z6+15X6Y2Z2+6X4Y4Z2+3X2Y6Z2+6X2Y4Z4+15X2Y2Z6+6XY2Z6+3X4Y2Z2+39X2Y4Z2+105X2Y2Z4+30XYZ6+6X3Y2Z2+12XY4Z2+12XY2Z4+6X3Y2Z+30X3YZ2+135X2Y2Z2+12XY4Z+6XY3Z2+6XY2Z3+6XYZ4+30X3YZ+12X2Y2Z+6X2YZ2+6XY3Z+90XY2Z2+30XYZ3+6X2YZ+78XY2Z+48XYZ2+42XYZ3X6Y4Z251X4Y4Z46X2Y8Z23X2Y4Z615X6Y2Z26X4Y4Z23X2Y6Z26X2Y4Z415X2Y2Z66XY2Z63X4Y2Z239X2Y4Z2105X2Y2Z430XYZ66X3Y2Z212XY4Z212XY2Z46X3Y2Z30X3YZ2135X2Y2Z212XY4Z6XY3Z26XY2Z36XYZ430X3YZ12X2Y2Z6X2YZ26XY3Z90XY2Z230XYZ36X2YZ78XY2Z48XYZ242XYZ3*X^6*Y^4*Z^2+51*X^4*Y^4*Z^4+6*X^2*Y^8*Z^2+3*X^2*Y^4*Z^6+15*X^6*Y^2*Z^2+6*X^4*Y^4*Z^2+3*X^2*Y^6*Z^2+6*X^2*Y^4*Z^4+15*X^2*Y^2*Z^6+6*X*Y^2*Z^6+3*X^4*Y^2*Z^2+39*X^2*Y^4*Z^2+105*X^2*Y^2*Z^4+30*X*Y*Z^6+6*X^3*Y^2*Z^2+12*X*Y^4*Z^2+12*X*Y^2*Z^4+6*X^3*Y^2*Z+30*X^3*Y*Z^2+135*X^2*Y^2*Z^2+12*X*Y^4*Z+6*X*Y^3*Z^2+6*X*Y^2*Z^3+6*X*Y*Z^4+30*X^3*Y*Z+12*X^2*Y^2*Z+6*X^2*Y*Z^2+6*X*Y^3*Z+90*X*Y^2*Z^2+30*X*Y*Z^3+6*X^2*Y*Z+78*X*Y^2*Z+48*X*Y*Z^2+42*X*Y*Z

Algorithm definition

The algorithm ⟨9×10×15:870⟩ is the (Kronecker) tensor product of ⟨3×2×3:15⟩ with ⟨3×5×5:58⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table