Description of fast matrix multiplication algorithm: ⟨16×30×30:7980⟩

Algorithm type

3X8Y12Z8+12X16Y4Z4+69X8Y8Z8+12X4Y4Z16+45X4Y12Z4+24X4Y8Z8+150X4Y8Z4+12X4Y4Z8+78X2Y12Z2+24X8Y4Z2+24X4Y6Z4+48X2Y8Z4+24X2Y4Z8+96X8Y2Z2+597X4Y4Z4+24X2Y8Z2+96X2Y2Z8+348X2Y6Z2+216X2Y4Z4+1014X2Y4Z2+96X2Y2Z4+468XY6Z+144X4Y2Z+36X2Y3Z2+288XY4Z2+144XY2Z4+144X4YZ+1188X2Y2Z2+144XY4Z+144XYZ4+468XY3Z+432XY2Z2+684XY2Z+144XYZ2+540XYZ3X8Y12Z812X16Y4Z469X8Y8Z812X4Y4Z1645X4Y12Z424X4Y8Z8150X4Y8Z412X4Y4Z878X2Y12Z224X8Y4Z224X4Y6Z448X2Y8Z424X2Y4Z896X8Y2Z2597X4Y4Z424X2Y8Z296X2Y2Z8348X2Y6Z2216X2Y4Z41014X2Y4Z296X2Y2Z4468XY6Z144X4Y2Z36X2Y3Z2288XY4Z2144XY2Z4144X4YZ1188X2Y2Z2144XY4Z144XYZ4468XY3Z432XY2Z2684XY2Z144XYZ2540XYZ3*X^8*Y^12*Z^8+12*X^16*Y^4*Z^4+69*X^8*Y^8*Z^8+12*X^4*Y^4*Z^16+45*X^4*Y^12*Z^4+24*X^4*Y^8*Z^8+150*X^4*Y^8*Z^4+12*X^4*Y^4*Z^8+78*X^2*Y^12*Z^2+24*X^8*Y^4*Z^2+24*X^4*Y^6*Z^4+48*X^2*Y^8*Z^4+24*X^2*Y^4*Z^8+96*X^8*Y^2*Z^2+597*X^4*Y^4*Z^4+24*X^2*Y^8*Z^2+96*X^2*Y^2*Z^8+348*X^2*Y^6*Z^2+216*X^2*Y^4*Z^4+1014*X^2*Y^4*Z^2+96*X^2*Y^2*Z^4+468*X*Y^6*Z+144*X^4*Y^2*Z+36*X^2*Y^3*Z^2+288*X*Y^4*Z^2+144*X*Y^2*Z^4+144*X^4*Y*Z+1188*X^2*Y^2*Z^2+144*X*Y^4*Z+144*X*Y*Z^4+468*X*Y^3*Z+432*X*Y^2*Z^2+684*X*Y^2*Z+144*X*Y*Z^2+540*X*Y*Z

Algorithm definition

The algorithm ⟨16×30×30:7980⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨8×15×15:1140⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table