Description of fast matrix multiplication algorithm: ⟨8×15×15:1140⟩

Algorithm type

3X4Y6Z4+12X8Y2Z2+69X4Y4Z4+12X2Y2Z8+45X2Y6Z2+24X2Y4Z4+150X2Y4Z2+12X2Y2Z4+78XY6Z+24X4Y2Z+6X2Y3Z2+48XY4Z2+24XY2Z4+24X4YZ+183X2Y2Z2+24XY4Z+24XYZ4+78XY3Z+72XY2Z2+114XY2Z+24XYZ2+90XYZ3X4Y6Z412X8Y2Z269X4Y4Z412X2Y2Z845X2Y6Z224X2Y4Z4150X2Y4Z212X2Y2Z478XY6Z24X4Y2Z6X2Y3Z248XY4Z224XY2Z424X4YZ183X2Y2Z224XY4Z24XYZ478XY3Z72XY2Z2114XY2Z24XYZ290XYZ3*X^4*Y^6*Z^4+12*X^8*Y^2*Z^2+69*X^4*Y^4*Z^4+12*X^2*Y^2*Z^8+45*X^2*Y^6*Z^2+24*X^2*Y^4*Z^4+150*X^2*Y^4*Z^2+12*X^2*Y^2*Z^4+78*X*Y^6*Z+24*X^4*Y^2*Z+6*X^2*Y^3*Z^2+48*X*Y^4*Z^2+24*X*Y^2*Z^4+24*X^4*Y*Z+183*X^2*Y^2*Z^2+24*X*Y^4*Z+24*X*Y*Z^4+78*X*Y^3*Z+72*X*Y^2*Z^2+114*X*Y^2*Z+24*X*Y*Z^2+90*X*Y*Z

Algorithm definition

The algorithm ⟨8×15×15:1140⟩ is the (Kronecker) tensor product of ⟨2×3×3:15⟩ with ⟨4×5×5:76⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table