Description of fast matrix multiplication algorithm: ⟨16×21×30:5835⟩

Algorithm type

3X14Y14Z16+6X7Y14Z8+3X6Y8Z12+33X8Y8Z8+6X8Y6Z8+6X7Y7Z8+9X6Y8Z8+3X8Y8Z4+3X8Y4Z8+3X6Y6Z8+6X4Y4Z12+3X6Y8Z4+3X4Y10Z4+6X3Y8Z6+6X8Y4Z4+72X4Y8Z4+24X4Y4Z8+18X3Y8Z4+3X6Y4Z4+6X4Y8Z2+12X4Y6Z4+9X4Y4Z6+6X2Y10Z2+6X3Y8Z2+6X3Y6Z4+6X3Y4Z6+384X4Y4Z4+12X2Y8Z2+12X2Y4Z6+12X4Y3Z4+18X3Y4Z4+27X6Y2Z2+36X4Y4Z2+24X4Y2Z4+6X3Y3Z4+45X2Y6Z2+78X2Y4Z4+48X2Y2Z6+12X3Y4Z2+6X2Y5Z2+18X2Y4Z3+66X4Y2Z2+708X2Y4Z2+192X2Y2Z4+90XY6Z+6X3Y2Z2+36X2Y4Z+18X2Y2Z3+60XY4Z2+54X3Y2Z+948X2Y2Z2+144XY4Z+72XY2Z3+54X3YZ+144X2Y2Z+36X2YZ2+90XY3Z+348XY2Z2+72XYZ3+108X2YZ+720XY2Z+288XYZ2+576XYZ3X14Y14Z166X7Y14Z83X6Y8Z1233X8Y8Z86X8Y6Z86X7Y7Z89X6Y8Z83X8Y8Z43X8Y4Z83X6Y6Z86X4Y4Z123X6Y8Z43X4Y10Z46X3Y8Z66X8Y4Z472X4Y8Z424X4Y4Z818X3Y8Z43X6Y4Z46X4Y8Z212X4Y6Z49X4Y4Z66X2Y10Z26X3Y8Z26X3Y6Z46X3Y4Z6384X4Y4Z412X2Y8Z212X2Y4Z612X4Y3Z418X3Y4Z427X6Y2Z236X4Y4Z224X4Y2Z46X3Y3Z445X2Y6Z278X2Y4Z448X2Y2Z612X3Y4Z26X2Y5Z218X2Y4Z366X4Y2Z2708X2Y4Z2192X2Y2Z490XY6Z6X3Y2Z236X2Y4Z18X2Y2Z360XY4Z254X3Y2Z948X2Y2Z2144XY4Z72XY2Z354X3YZ144X2Y2Z36X2YZ290XY3Z348XY2Z272XYZ3108X2YZ720XY2Z288XYZ2576XYZ3*X^14*Y^14*Z^16+6*X^7*Y^14*Z^8+3*X^6*Y^8*Z^12+33*X^8*Y^8*Z^8+6*X^8*Y^6*Z^8+6*X^7*Y^7*Z^8+9*X^6*Y^8*Z^8+3*X^8*Y^8*Z^4+3*X^8*Y^4*Z^8+3*X^6*Y^6*Z^8+6*X^4*Y^4*Z^12+3*X^6*Y^8*Z^4+3*X^4*Y^10*Z^4+6*X^3*Y^8*Z^6+6*X^8*Y^4*Z^4+72*X^4*Y^8*Z^4+24*X^4*Y^4*Z^8+18*X^3*Y^8*Z^4+3*X^6*Y^4*Z^4+6*X^4*Y^8*Z^2+12*X^4*Y^6*Z^4+9*X^4*Y^4*Z^6+6*X^2*Y^10*Z^2+6*X^3*Y^8*Z^2+6*X^3*Y^6*Z^4+6*X^3*Y^4*Z^6+384*X^4*Y^4*Z^4+12*X^2*Y^8*Z^2+12*X^2*Y^4*Z^6+12*X^4*Y^3*Z^4+18*X^3*Y^4*Z^4+27*X^6*Y^2*Z^2+36*X^4*Y^4*Z^2+24*X^4*Y^2*Z^4+6*X^3*Y^3*Z^4+45*X^2*Y^6*Z^2+78*X^2*Y^4*Z^4+48*X^2*Y^2*Z^6+12*X^3*Y^4*Z^2+6*X^2*Y^5*Z^2+18*X^2*Y^4*Z^3+66*X^4*Y^2*Z^2+708*X^2*Y^4*Z^2+192*X^2*Y^2*Z^4+90*X*Y^6*Z+6*X^3*Y^2*Z^2+36*X^2*Y^4*Z+18*X^2*Y^2*Z^3+60*X*Y^4*Z^2+54*X^3*Y^2*Z+948*X^2*Y^2*Z^2+144*X*Y^4*Z+72*X*Y^2*Z^3+54*X^3*Y*Z+144*X^2*Y^2*Z+36*X^2*Y*Z^2+90*X*Y^3*Z+348*X*Y^2*Z^2+72*X*Y*Z^3+108*X^2*Y*Z+720*X*Y^2*Z+288*X*Y*Z^2+576*X*Y*Z

Algorithm definition

The algorithm ⟨16×21×30:5835⟩ is the (Kronecker) tensor product of ⟨2×3×3:15⟩ with ⟨8×7×10:389⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table