Description of fast matrix multiplication algorithm: ⟨15×15×16:2200⟩

Algorithm type

160X4Y6Z6+240X2Y6Z6+64X6Y3Z3+30X4Y4Z4+12X6Y2Z2+160X4Y3Z3+96X3Y3Z3+24X6YZ+90X4Y2Z2+496X2Y3Z3+384XY3Z3+60X4YZ+108X2Y2Z2+24X3YZ+156X2YZ+96XYZ160X4Y6Z6240X2Y6Z664X6Y3Z330X4Y4Z412X6Y2Z2160X4Y3Z396X3Y3Z324X6YZ90X4Y2Z2496X2Y3Z3384XY3Z360X4YZ108X2Y2Z224X3YZ156X2YZ96XYZ160*X^4*Y^6*Z^6+240*X^2*Y^6*Z^6+64*X^6*Y^3*Z^3+30*X^4*Y^4*Z^4+12*X^6*Y^2*Z^2+160*X^4*Y^3*Z^3+96*X^3*Y^3*Z^3+24*X^6*Y*Z+90*X^4*Y^2*Z^2+496*X^2*Y^3*Z^3+384*X*Y^3*Z^3+60*X^4*Y*Z+108*X^2*Y^2*Z^2+24*X^3*Y*Z+156*X^2*Y*Z+96*X*Y*Z

Algorithm definition

The algorithm ⟨15×15×16:2200⟩ is the (Kronecker) tensor product of ⟨3×3×8:55⟩ with ⟨5×5×2:40⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table