Description of fast matrix multiplication algorithm: ⟨15×15×15:2088⟩

Algorithm type

18X8Y2Z2+9X4Y6Z2+153X4Y4Z4+9X4Y2Z6+2X2YZ9+10XYZ9+9X6Y2Z2+18X4Y4Z2+18X4Y2Z4+45X2Y6Z2+79X2Y2Z6+6X2Y6Z+10X2YZ6+117X4Y2Z2+4X4YZ3+111X2Y4Z2+2X2Y3Z3+111X2Y2Z4+30XY6Z+32XYZ6+12X4Y2Z+12X4YZ2+2X3YZ3+12X2Y4Z+6X2Y3Z2+10X2Y2Z3+12X2YZ4+10XY3Z3+26X4YZ+6X3Y2Z+6X3YZ2+13X2Y3Z+308X2Y2Z2+39X2YZ3+6XY4Z+30XY3Z2+32XY2Z3+6XYZ4+13X3YZ+104X2Y2Z+104X2YZ2+65XY3Z+12XY2Z2+79XYZ3+169X2YZ+55XY2Z+55XYZ2+91XYZ18X8Y2Z29X4Y6Z2153X4Y4Z49X4Y2Z62X2YZ910XYZ99X6Y2Z218X4Y4Z218X4Y2Z445X2Y6Z279X2Y2Z66X2Y6Z10X2YZ6117X4Y2Z24X4YZ3111X2Y4Z22X2Y3Z3111X2Y2Z430XY6Z32XYZ612X4Y2Z12X4YZ22X3YZ312X2Y4Z6X2Y3Z210X2Y2Z312X2YZ410XY3Z326X4YZ6X3Y2Z6X3YZ213X2Y3Z308X2Y2Z239X2YZ36XY4Z30XY3Z232XY2Z36XYZ413X3YZ104X2Y2Z104X2YZ265XY3Z12XY2Z279XYZ3169X2YZ55XY2Z55XYZ291XYZ18*X^8*Y^2*Z^2+9*X^4*Y^6*Z^2+153*X^4*Y^4*Z^4+9*X^4*Y^2*Z^6+2*X^2*Y*Z^9+10*X*Y*Z^9+9*X^6*Y^2*Z^2+18*X^4*Y^4*Z^2+18*X^4*Y^2*Z^4+45*X^2*Y^6*Z^2+79*X^2*Y^2*Z^6+6*X^2*Y^6*Z+10*X^2*Y*Z^6+117*X^4*Y^2*Z^2+4*X^4*Y*Z^3+111*X^2*Y^4*Z^2+2*X^2*Y^3*Z^3+111*X^2*Y^2*Z^4+30*X*Y^6*Z+32*X*Y*Z^6+12*X^4*Y^2*Z+12*X^4*Y*Z^2+2*X^3*Y*Z^3+12*X^2*Y^4*Z+6*X^2*Y^3*Z^2+10*X^2*Y^2*Z^3+12*X^2*Y*Z^4+10*X*Y^3*Z^3+26*X^4*Y*Z+6*X^3*Y^2*Z+6*X^3*Y*Z^2+13*X^2*Y^3*Z+308*X^2*Y^2*Z^2+39*X^2*Y*Z^3+6*X*Y^4*Z+30*X*Y^3*Z^2+32*X*Y^2*Z^3+6*X*Y*Z^4+13*X^3*Y*Z+104*X^2*Y^2*Z+104*X^2*Y*Z^2+65*X*Y^3*Z+12*X*Y^2*Z^2+79*X*Y*Z^3+169*X^2*Y*Z+55*X*Y^2*Z+55*X*Y*Z^2+91*X*Y*Z

Algorithm definition

The algorithm ⟨15×15×15:2088⟩ is the (Kronecker) tensor product of ⟨3×3×5:36⟩ with ⟨5×5×3:58⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table