Description of fast matrix multiplication algorithm: ⟨14×16×20:2695⟩

Algorithm type

2X12Y8Z8+2X10Y8Z8+2X10Y8Z6+4X8Y8Z8+X8Y4Z12+X6Y8Z10+X2Y8Z14+2X10Y8Z4+X6Y8Z8+X4Y8Z10+2X12Y4Z4+X8Y4Z8+4X6Y8Z6+X6Y4Z10+2X4Y12Z4+3X4Y8Z8+4X10Y4Z4+2X6Y4Z8+X2Y8Z8+2X10Y4Z2+4X8Y4Z4+X6Y4Z6+2X4Y8Z4+36X6Y4Z4+3X4Y4Z6+3X2Y4Z8+12X5Y4Z4+6X6Y4Z2+12X5Y4Z3+97X4Y4Z4+12X4Y2Z6+6X3Y4Z5+3X2Y4Z6+6XY4Z7+12X5Y4Z2+6X3Y4Z4+6X2Y4Z5+45X6Y2Z2+3X4Y4Z2+18X4Y2Z4+24X3Y4Z3+6X3Y2Z5+24X2Y6Z2+36X2Y4Z4+12X2Y2Z6+24X5Y2Z2+12X3Y2Z4+6XY4Z4+12X5Y2Z+63X4Y2Z2+6X3Y2Z3+44X2Y4Z2+18X2Y2Z4+144X3Y2Z2+18X2Y2Z3+18XY2Z4+36X3Y2Z+480X2Y2Z2+36X2YZ3+18XY2Z3+198X3YZ+18X2Y2Z+72X2YZ2+72XY3Z+108XY2Z2+72XYZ3+234X2YZ+192XY2Z+108XYZ2+252XYZ2X12Y8Z82X10Y8Z82X10Y8Z64X8Y8Z8X8Y4Z12X6Y8Z10X2Y8Z142X10Y8Z4X6Y8Z8X4Y8Z102X12Y4Z4X8Y4Z84X6Y8Z6X6Y4Z102X4Y12Z43X4Y8Z84X10Y4Z42X6Y4Z8X2Y8Z82X10Y4Z24X8Y4Z4X6Y4Z62X4Y8Z436X6Y4Z43X4Y4Z63X2Y4Z812X5Y4Z46X6Y4Z212X5Y4Z397X4Y4Z412X4Y2Z66X3Y4Z53X2Y4Z66XY4Z712X5Y4Z26X3Y4Z46X2Y4Z545X6Y2Z23X4Y4Z218X4Y2Z424X3Y4Z36X3Y2Z524X2Y6Z236X2Y4Z412X2Y2Z624X5Y2Z212X3Y2Z46XY4Z412X5Y2Z63X4Y2Z26X3Y2Z344X2Y4Z218X2Y2Z4144X3Y2Z218X2Y2Z318XY2Z436X3Y2Z480X2Y2Z236X2YZ318XY2Z3198X3YZ18X2Y2Z72X2YZ272XY3Z108XY2Z272XYZ3234X2YZ192XY2Z108XYZ2252XYZ2*X^12*Y^8*Z^8+2*X^10*Y^8*Z^8+2*X^10*Y^8*Z^6+4*X^8*Y^8*Z^8+X^8*Y^4*Z^12+X^6*Y^8*Z^10+X^2*Y^8*Z^14+2*X^10*Y^8*Z^4+X^6*Y^8*Z^8+X^4*Y^8*Z^10+2*X^12*Y^4*Z^4+X^8*Y^4*Z^8+4*X^6*Y^8*Z^6+X^6*Y^4*Z^10+2*X^4*Y^12*Z^4+3*X^4*Y^8*Z^8+4*X^10*Y^4*Z^4+2*X^6*Y^4*Z^8+X^2*Y^8*Z^8+2*X^10*Y^4*Z^2+4*X^8*Y^4*Z^4+X^6*Y^4*Z^6+2*X^4*Y^8*Z^4+36*X^6*Y^4*Z^4+3*X^4*Y^4*Z^6+3*X^2*Y^4*Z^8+12*X^5*Y^4*Z^4+6*X^6*Y^4*Z^2+12*X^5*Y^4*Z^3+97*X^4*Y^4*Z^4+12*X^4*Y^2*Z^6+6*X^3*Y^4*Z^5+3*X^2*Y^4*Z^6+6*X*Y^4*Z^7+12*X^5*Y^4*Z^2+6*X^3*Y^4*Z^4+6*X^2*Y^4*Z^5+45*X^6*Y^2*Z^2+3*X^4*Y^4*Z^2+18*X^4*Y^2*Z^4+24*X^3*Y^4*Z^3+6*X^3*Y^2*Z^5+24*X^2*Y^6*Z^2+36*X^2*Y^4*Z^4+12*X^2*Y^2*Z^6+24*X^5*Y^2*Z^2+12*X^3*Y^2*Z^4+6*X*Y^4*Z^4+12*X^5*Y^2*Z+63*X^4*Y^2*Z^2+6*X^3*Y^2*Z^3+44*X^2*Y^4*Z^2+18*X^2*Y^2*Z^4+144*X^3*Y^2*Z^2+18*X^2*Y^2*Z^3+18*X*Y^2*Z^4+36*X^3*Y^2*Z+480*X^2*Y^2*Z^2+36*X^2*Y*Z^3+18*X*Y^2*Z^3+198*X^3*Y*Z+18*X^2*Y^2*Z+72*X^2*Y*Z^2+72*X*Y^3*Z+108*X*Y^2*Z^2+72*X*Y*Z^3+234*X^2*Y*Z+192*X*Y^2*Z+108*X*Y*Z^2+252*X*Y*Z

Algorithm definition

The algorithm ⟨14×16×20:2695⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨7×8×10:385⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table