Description of fast matrix multiplication algorithm: ⟨14×15×18:2250⟩

Algorithm type

3X4Y6Z4+177X4Y4Z4+3X4Y4Z2+12X2Y6Z2+6X2Y4Z4+60X4Y2Z2+402X2Y4Z2+81X2Y2Z4+12XY6Z+6X2Y4Z+6X2Y3Z2+12XY4Z2+420X2Y2Z2+96XY4Z+126X2Y2Z+12XY3Z+174XY2Z2+120X2YZ+228XY2Z+162XYZ2+132XYZ3X4Y6Z4177X4Y4Z43X4Y4Z212X2Y6Z26X2Y4Z460X4Y2Z2402X2Y4Z281X2Y2Z412XY6Z6X2Y4Z6X2Y3Z212XY4Z2420X2Y2Z296XY4Z126X2Y2Z12XY3Z174XY2Z2120X2YZ228XY2Z162XYZ2132XYZ3*X^4*Y^6*Z^4+177*X^4*Y^4*Z^4+3*X^4*Y^4*Z^2+12*X^2*Y^6*Z^2+6*X^2*Y^4*Z^4+60*X^4*Y^2*Z^2+402*X^2*Y^4*Z^2+81*X^2*Y^2*Z^4+12*X*Y^6*Z+6*X^2*Y^4*Z+6*X^2*Y^3*Z^2+12*X*Y^4*Z^2+420*X^2*Y^2*Z^2+96*X*Y^4*Z+126*X^2*Y^2*Z+12*X*Y^3*Z+174*X*Y^2*Z^2+120*X^2*Y*Z+228*X*Y^2*Z+162*X*Y*Z^2+132*X*Y*Z

Algorithm definition

The algorithm ⟨14×15×18:2250⟩ is the (Kronecker) tensor product of ⟨2×3×3:15⟩ with ⟨7×5×6:150⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table