Description of fast matrix multiplication algorithm: ⟨14×14×26:3087⟩

Algorithm type

5X8Y8Z8+3X8Y8Z6+2X8Y6Z8+3X6Y8Z8+2X8Y6Z6+2X6Y8Z6+6X6Y6Z8+6X6Y6Z6+X8Y4Z4+5X4Y8Z4+16X4Y6Z6+4X4Y4Z8+4X6Y4Z4+3X4Y8Z2+9X4Y6Z4+8X4Y4Z6+24X2Y6Z6+2X2Y4Z8+X4Y6Z2+126X4Y4Z4+2X2Y8Z2+2X2Y4Z6+4X2Y2Z8+18X4Y4Z3+12X4Y3Z4+18X3Y4Z4+10X4Y4Z2+12X4Y3Z3+15X4Y2Z4+12X3Y4Z3+36X3Y3Z4+15X2Y6Z2+2X2Y4Z4+12X2Y2Z6+36X3Y3Z3+6X4Y2Z2+82X2Y4Z2+96X2Y3Z3+75X2Y2Z4+24X3Y2Z2+18X2Y4Z+54X2Y3Z2+48X2Y2Z3+144XY3Z3+12XY2Z4+6X2Y3Z+650X2Y2Z2+12XY4Z+12XY2Z3+24XYZ4+60X2Y2Z+90X2YZ2+90XY3Z+12XY2Z2+72XYZ3+312XY2Z+306XYZ2+444XYZ5X8Y8Z83X8Y8Z62X8Y6Z83X6Y8Z82X8Y6Z62X6Y8Z66X6Y6Z86X6Y6Z6X8Y4Z45X4Y8Z416X4Y6Z64X4Y4Z84X6Y4Z43X4Y8Z29X4Y6Z48X4Y4Z624X2Y6Z62X2Y4Z8X4Y6Z2126X4Y4Z42X2Y8Z22X2Y4Z64X2Y2Z818X4Y4Z312X4Y3Z418X3Y4Z410X4Y4Z212X4Y3Z315X4Y2Z412X3Y4Z336X3Y3Z415X2Y6Z22X2Y4Z412X2Y2Z636X3Y3Z36X4Y2Z282X2Y4Z296X2Y3Z375X2Y2Z424X3Y2Z218X2Y4Z54X2Y3Z248X2Y2Z3144XY3Z312XY2Z46X2Y3Z650X2Y2Z212XY4Z12XY2Z324XYZ460X2Y2Z90X2YZ290XY3Z12XY2Z272XYZ3312XY2Z306XYZ2444XYZ5*X^8*Y^8*Z^8+3*X^8*Y^8*Z^6+2*X^8*Y^6*Z^8+3*X^6*Y^8*Z^8+2*X^8*Y^6*Z^6+2*X^6*Y^8*Z^6+6*X^6*Y^6*Z^8+6*X^6*Y^6*Z^6+X^8*Y^4*Z^4+5*X^4*Y^8*Z^4+16*X^4*Y^6*Z^6+4*X^4*Y^4*Z^8+4*X^6*Y^4*Z^4+3*X^4*Y^8*Z^2+9*X^4*Y^6*Z^4+8*X^4*Y^4*Z^6+24*X^2*Y^6*Z^6+2*X^2*Y^4*Z^8+X^4*Y^6*Z^2+126*X^4*Y^4*Z^4+2*X^2*Y^8*Z^2+2*X^2*Y^4*Z^6+4*X^2*Y^2*Z^8+18*X^4*Y^4*Z^3+12*X^4*Y^3*Z^4+18*X^3*Y^4*Z^4+10*X^4*Y^4*Z^2+12*X^4*Y^3*Z^3+15*X^4*Y^2*Z^4+12*X^3*Y^4*Z^3+36*X^3*Y^3*Z^4+15*X^2*Y^6*Z^2+2*X^2*Y^4*Z^4+12*X^2*Y^2*Z^6+36*X^3*Y^3*Z^3+6*X^4*Y^2*Z^2+82*X^2*Y^4*Z^2+96*X^2*Y^3*Z^3+75*X^2*Y^2*Z^4+24*X^3*Y^2*Z^2+18*X^2*Y^4*Z+54*X^2*Y^3*Z^2+48*X^2*Y^2*Z^3+144*X*Y^3*Z^3+12*X*Y^2*Z^4+6*X^2*Y^3*Z+650*X^2*Y^2*Z^2+12*X*Y^4*Z+12*X*Y^2*Z^3+24*X*Y*Z^4+60*X^2*Y^2*Z+90*X^2*Y*Z^2+90*X*Y^3*Z+12*X*Y^2*Z^2+72*X*Y*Z^3+312*X*Y^2*Z+306*X*Y*Z^2+444*X*Y*Z

Algorithm definition

The algorithm ⟨14×14×26:3087⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨7×7×13:441⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table