Description of fast matrix multiplication algorithm: ⟨8×8×14:602⟩

Algorithm type

X6Y8Z6+X6Y8Z4+2X6Y6Z5+12X4Y4Z4+8X4Y4Z3+6X4Y3Z4+2X2Y7Z2+7X4Y3Z3+X4Y2Z4+12X3Y4Z3+2X2Y6Z2+X4Y2Z3+3X2Y3Z2+178X2Y2Z2+12XY4Z+11X2Y2Z+18X2YZ2+6XY3Z+3XYZ3+13X2YZ+24XY2Z+6XYZ2+273XYZX6Y8Z6X6Y8Z42X6Y6Z512X4Y4Z48X4Y4Z36X4Y3Z42X2Y7Z27X4Y3Z3X4Y2Z412X3Y4Z32X2Y6Z2X4Y2Z33X2Y3Z2178X2Y2Z212XY4Z11X2Y2Z18X2YZ26XY3Z3XYZ313X2YZ24XY2Z6XYZ2273XYZX^6*Y^8*Z^6+X^6*Y^8*Z^4+2*X^6*Y^6*Z^5+12*X^4*Y^4*Z^4+8*X^4*Y^4*Z^3+6*X^4*Y^3*Z^4+2*X^2*Y^7*Z^2+7*X^4*Y^3*Z^3+X^4*Y^2*Z^4+12*X^3*Y^4*Z^3+2*X^2*Y^6*Z^2+X^4*Y^2*Z^3+3*X^2*Y^3*Z^2+178*X^2*Y^2*Z^2+12*X*Y^4*Z+11*X^2*Y^2*Z+18*X^2*Y*Z^2+6*X*Y^3*Z+3*X*Y*Z^3+13*X^2*Y*Z+24*X*Y^2*Z+6*X*Y*Z^2+273*X*Y*Z

Algorithm definition

The algorithm ⟨8×8×14:602⟩ could be constructed using the following decomposition:

⟨8×8×14:602⟩ = ⟨4×4×5:62⟩ + ⟨4×4×5:62⟩ + ⟨4×4×9:104⟩ + ⟨4×4×9:104⟩ + ⟨4×4×5:62⟩ + ⟨4×4×9:104⟩ + ⟨4×4×9:104⟩.

This decomposition is defined by the following equality:

TraceMulA_1_1A_1_2A_1_3A_1_4A_1_5A_1_6A_1_7A_1_8A_2_1A_2_2A_2_3A_2_4A_2_5A_2_6A_2_7A_2_8A_3_1A_3_2A_3_3A_3_4A_3_5A_3_6A_3_7A_3_8A_4_1A_4_2A_4_3A_4_4A_4_5A_4_6A_4_7A_4_8A_5_1A_5_2A_5_3A_5_4A_5_5A_5_6A_5_7A_5_8A_6_1A_6_2A_6_3A_6_4A_6_5A_6_6A_6_7A_6_8A_7_1A_7_2A_7_3A_7_4A_7_5A_7_6A_7_7A_7_8A_8_1A_8_2A_8_3A_8_4A_8_5A_8_6A_8_7A_8_8B_1_1B_1_2B_1_3B_1_4B_1_5B_1_6B_1_7B_1_8B_1_9B_1_10B_1_11B_1_12B_1_13B_1_14B_2_1B_2_2B_2_3B_2_4B_2_5B_2_6B_2_7B_2_8B_2_9B_2_10B_2_11B_2_12B_2_13B_2_14B_3_1B_3_2B_3_3B_3_4B_3_5B_3_6B_3_7B_3_8B_3_9B_3_10B_3_11B_3_12B_3_13B_3_14B_4_1B_4_2B_4_3B_4_4B_4_5B_4_6B_4_7B_4_8B_4_9B_4_10B_4_11B_4_12B_4_13B_4_14B_5_1B_5_2B_5_3B_5_4B_5_5B_5_6B_5_7B_5_8B_5_9B_5_10B_5_11B_5_12B_5_13B_5_14B_6_1B_6_2B_6_3B_6_4B_6_5B_6_6B_6_7B_6_8B_6_9B_6_10B_6_11B_6_12B_6_13B_6_14B_7_1B_7_2B_7_3B_7_4B_7_5B_7_6B_7_7B_7_8B_7_9B_7_10B_7_11B_7_12B_7_13B_7_14B_8_1B_8_2B_8_3B_8_4B_8_5B_8_6B_8_7B_8_8B_8_9B_8_10B_8_11B_8_12B_8_13B_8_14C_1_1C_1_2C_1_3C_1_4C_1_5C_1_6C_1_7C_1_8C_2_1C_2_2C_2_3C_2_4C_2_5C_2_6C_2_7C_2_8C_3_1C_3_2C_3_3C_3_4C_3_5C_3_6C_3_7C_3_8C_4_1C_4_2C_4_3C_4_4C_4_5C_4_6C_4_7C_4_8C_5_1C_5_2C_5_3C_5_4C_5_5C_5_6C_5_7C_5_8C_6_1C_6_2C_6_3C_6_4C_6_5C_6_6C_6_7C_6_8C_7_1C_7_2C_7_3C_7_4C_7_5C_7_6C_7_7C_7_8C_8_1C_8_2C_8_3C_8_4C_8_5C_8_6C_8_7C_8_8C_9_1C_9_2C_9_3C_9_4C_9_5C_9_6C_9_7C_9_8C_10_1C_10_2C_10_3C_10_4C_10_5C_10_6C_10_7C_10_8C_11_1C_11_2C_11_3C_11_4C_11_5C_11_6C_11_7C_11_8C_12_1C_12_2C_12_3C_12_4C_12_5C_12_6C_12_7C_12_8C_13_1C_13_2C_13_3C_13_4C_13_5C_13_6C_13_7C_13_8C_14_1C_14_2C_14_3C_14_4C_14_5C_14_6C_14_7C_14_8=TraceMulA_1_1-A_1_5A_1_2-A_1_6A_1_3-A_1_7A_1_4-A_1_8A_2_1-A_2_5A_2_2-A_2_6A_2_3-A_2_7A_2_4-A_2_8A_3_1-A_3_5A_3_2-A_3_6A_3_3-A_3_7A_3_4-A_3_8A_4_1-A_4_5A_4_2-A_4_6A_4_3-A_4_7A_4_4-A_4_8B_1_1-B_1_10B_1_2-B_1_11B_1_3-B_1_12B_1_4-B_1_13B_1_5-B_1_14B_2_1-B_2_10B_2_2-B_2_11B_2_3-B_2_12B_2_4-B_2_13B_2_5-B_2_14B_3_1-B_3_10B_3_2-B_3_11B_3_3-B_3_12B_3_4-B_3_13B_3_5-B_3_14B_4_1-B_4_10B_4_2-B_4_11B_4_3-B_4_12B_4_4-B_4_13B_4_5-B_4_14C_1_1-C_1_5C_1_2-C_1_6C_1_3-C_1_7C_1_4-C_1_8C_2_1-C_2_5C_2_2-C_2_6C_2_3-C_2_7C_2_4-C_2_8C_3_1-C_3_5C_3_2-C_3_6C_3_3-C_3_7C_3_4-C_3_8C_4_1-C_4_5C_4_2-C_4_6C_4_3-C_4_7C_4_4-C_4_8C_5_1-C_5_5C_5_2-C_5_6C_5_3-C_5_7C_5_4-C_5_8+TraceMulA_1_1+A_5_1A_1_2+A_5_2A_1_3+A_5_3A_1_4+A_5_4A_2_1+A_6_1A_2_2+A_6_2A_2_3+A_6_3A_2_4+A_6_4A_3_1+A_7_1A_3_2+A_7_2A_3_3+A_7_3A_3_4+A_7_4A_4_1+A_8_1A_4_2+A_8_2A_4_3+A_8_3A_4_4+A_8_4B_1_1+B_5_1B_1_2+B_5_2B_1_3+B_5_3B_1_4+B_5_4B_1_5+B_5_5B_2_1+B_6_1B_2_2+B_6_2B_2_3+B_6_3B_2_4+B_6_4B_2_5+B_6_5B_3_1+B_7_1B_3_2+B_7_2B_3_3+B_7_3B_3_4+B_7_4B_3_5+B_7_5B_4_1+B_8_1B_4_2+B_8_2B_4_3+B_8_3B_4_4+B_8_4B_4_5+B_8_5C_1_1+C_10_1C_1_2+C_10_2C_1_3+C_10_3C_1_4+C_10_4C_2_1+C_11_1C_2_2+C_11_2C_2_3+C_11_3C_2_4+C_11_4C_3_1+C_12_1C_3_2+C_12_2C_3_3+C_12_3C_3_4+C_12_4C_4_1+C_13_1C_4_2+C_13_2C_4_3+C_13_3C_4_4+C_13_4C_5_1+C_14_1C_5_2+C_14_2C_5_3+C_14_3C_5_4+C_14_4+TraceMulA_5_5A_5_6A_5_7A_5_8A_6_5A_6_6A_6_7A_6_8A_7_5A_7_6A_7_7A_7_8A_8_5A_8_6A_8_7A_8_8B_5_6B_5_7B_5_8B_5_9B_5_10B_5_11B_5_12B_5_13B_5_14B_6_6B_6_7B_6_8B_6_9B_6_10B_6_11B_6_12B_6_13B_6_14B_7_6B_7_7B_7_8B_7_9B_7_10B_7_11B_7_12B_7_13B_7_14B_8_6B_8_7B_8_8B_8_9B_8_10B_8_11B_8_12B_8_13B_8_14C_6_5C_6_6C_6_7C_6_8C_7_5C_7_6C_7_7C_7_8C_8_5C_8_6C_8_7C_8_8C_9_5C_9_6C_9_7C_9_8C_10_5C_10_6C_10_7C_10_8C_11_5C_11_6C_11_7C_11_8C_12_5C_12_6C_12_7C_12_8C_13_5C_13_6C_13_7C_13_8C_14_5C_14_6C_14_7C_14_8+TraceMulA_1_5A_1_6A_1_7A_1_8A_2_5A_2_6A_2_7A_2_8A_3_5A_3_6A_3_7A_3_8A_4_5A_4_6A_4_7A_4_8B_1_6+B_5_6B_1_7+B_5_7B_1_8+B_5_8B_1_9+B_5_9-B_1_1-B_5_1+B_1_10+B_5_10-B_1_2-B_5_2+B_1_11+B_5_11-B_1_3-B_5_3+B_1_12+B_5_12-B_1_4-B_5_4+B_1_13+B_5_13-B_1_5-B_5_5+B_1_14+B_5_14B_2_6+B_6_6B_2_7+B_6_7B_2_8+B_6_8B_2_9+B_6_9-B_2_1-B_6_1+B_2_10+B_6_10-B_2_2-B_6_2+B_2_11+B_6_11-B_2_3-B_6_3+B_2_12+B_6_12-B_2_4-B_6_4+B_2_13+B_6_13-B_2_5-B_6_5+B_2_14+B_6_14B_3_6+B_7_6B_3_7+B_7_7B_3_8+B_7_8B_3_9+B_7_9-B_7_1-B_3_1+B_7_10+B_3_10-B_3_2-B_7_2+B_3_11+B_7_11-B_3_3-B_7_3+B_3_12+B_7_12-B_3_4-B_7_4+B_3_13+B_7_13-B_3_5-B_7_5+B_3_14+B_7_14B_4_6+B_8_6B_4_7+B_8_7B_4_8+B_8_8B_4_9+B_8_9-B_4_1-B_8_1+B_4_10+B_8_10-B_4_2-B_8_2+B_4_11+B_8_11-B_4_3-B_8_3+B_4_12+B_8_12-B_4_4-B_8_4+B_4_13+B_8_13-B_4_5-B_8_5+B_4_14+B_8_14C_6_1C_6_2C_6_3C_6_4C_7_1C_7_2C_7_3C_7_4C_8_1C_8_2C_8_3C_8_4C_9_1C_9_2C_9_3C_9_4C_10_1C_10_2C_10_3C_10_4C_11_1C_11_2C_11_3C_11_4C_12_1C_12_2C_12_3C_12_4C_13_1C_13_2C_13_3C_13_4C_14_1C_14_2C_14_3C_14_4+TraceMul-A_1_1-A_5_1+A_1_5+A_5_5-A_1_2-A_5_2+A_1_6+A_5_6-A_1_3-A_5_3+A_1_7+A_5_7-A_1_4-A_5_4+A_1_8+A_5_8-A_2_1-A_6_1+A_2_5+A_6_5-A_2_2-A_6_2+A_2_6+A_6_6-A_2_3-A_6_3+A_2_7+A_6_7-A_2_4-A_6_4+A_2_8+A_6_8-A_3_1-A_7_1+A_3_5+A_7_5-A_3_2-A_7_2+A_3_6+A_7_6-A_3_3-A_7_3+A_3_7+A_7_7-A_3_4-A_7_4+A_3_8+A_7_8-A_4_1-A_8_1+A_4_5+A_8_5-A_4_2-A_8_2+A_4_6+A_8_6-A_4_3-A_8_3+A_4_7+A_8_7-A_4_4-A_8_4+A_4_8+A_8_8B_5_1B_5_2B_5_3B_5_4B_5_5B_6_1B_6_2B_6_3B_6_4B_6_5B_7_1B_7_2B_7_3B_7_4B_7_5B_8_1B_8_2B_8_3B_8_4B_8_5C_1_5C_1_6C_1_7C_1_8C_2_5C_2_6C_2_7C_2_8C_3_5C_3_6C_3_7C_3_8C_4_5C_4_6C_4_7C_4_8C_5_5C_5_6C_5_7C_5_8+TraceMulA_5_1A_5_2A_5_3A_5_4A_6_1A_6_2A_6_3A_6_4A_7_1A_7_2A_7_3A_7_4A_8_1A_8_2A_8_3A_8_4B_1_6B_1_7B_1_8B_1_9B_1_10B_1_11B_1_12B_1_13B_1_14B_2_6B_2_7B_2_8B_2_9B_2_10B_2_11B_2_12B_2_13B_2_14B_3_6B_3_7B_3_8B_3_9B_3_10B_3_11B_3_12B_3_13B_3_14B_4_6B_4_7B_4_8B_4_9B_4_10B_4_11B_4_12B_4_13B_4_14-C_6_1+C_6_5-C_6_2+C_6_6-C_6_3+C_6_7-C_6_4+C_6_8-C_7_1+C_7_5-C_7_2+C_7_6-C_7_3+C_7_7-C_7_4+C_7_8-C_8_1+C_8_5-C_8_2+C_8_6-C_8_3+C_8_7-C_8_4+C_8_8-C_9_1+C_9_5-C_9_2+C_9_6-C_9_3+C_9_7-C_9_4+C_9_8-C_1_1-C_10_1+C_1_5+C_10_5-C_1_2-C_10_2+C_1_6+C_10_6-C_1_3-C_10_3+C_1_7+C_10_7-C_1_4-C_10_4+C_1_8+C_10_8-C_2_1-C_11_1+C_2_5+C_11_5-C_2_2-C_11_2+C_2_6+C_11_6-C_2_3-C_11_3+C_2_7+C_11_7-C_2_4-C_11_4+C_2_8+C_11_8-C_3_1-C_12_1+C_3_5+C_12_5-C_3_2-C_12_2+C_3_6+C_12_6-C_3_3-C_12_3+C_3_7+C_12_7-C_3_4-C_12_4+C_3_8+C_12_8-C_4_1-C_13_1+C_4_5+C_13_5-C_4_2-C_13_2+C_4_6+C_13_6-C_4_3-C_13_3+C_4_7+C_13_7-C_4_4-C_13_4+C_4_8+C_13_8-C_5_1-C_14_1+C_5_5+C_14_5-C_5_2-C_14_2+C_5_6+C_14_6-C_5_3-C_14_3+C_5_7+C_14_7-C_5_4-C_14_4+C_5_8+C_14_8+TraceMul-A_1_1-A_5_1+A_1_5-A_1_2-A_5_2+A_1_6-A_1_3-A_5_3+A_1_7-A_1_4-A_5_4+A_1_8-A_2_1-A_6_1+A_2_5-A_2_2-A_6_2+A_2_6-A_2_3-A_6_3+A_2_7-A_2_4-A_6_4+A_2_8-A_3_1-A_7_1+A_3_5-A_3_2-A_7_2+A_3_6-A_3_3-A_7_3+A_3_7-A_3_4-A_7_4+A_3_8-A_4_1-A_8_1+A_4_5-A_4_2-A_8_2+A_4_6-A_4_3-A_8_3+A_4_7-A_4_4-A_8_4+A_4_8-B_1_6-B_1_7-B_1_8-B_1_9B_1_1+B_5_1-B_1_10B_1_2+B_5_2-B_1_11B_1_3+B_5_3-B_1_12B_1_4+B_5_4-B_1_13B_1_5+B_5_5-B_1_14-B_2_6-B_2_7-B_2_8-B_2_9B_2_1+B_6_1-B_2_10B_2_2+B_6_2-B_2_11B_2_3+B_6_3-B_2_12B_2_4+B_6_4-B_2_13B_2_5+B_6_5-B_2_14-B_3_6-B_3_7-B_3_8-B_3_9B_3_1+B_7_1-B_3_10B_3_2+B_7_2-B_3_11B_3_3+B_7_3-B_3_12B_3_4+B_7_4-B_3_13B_3_5+B_7_5-B_3_14-B_4_6-B_4_7-B_4_8-B_4_9B_4_1+B_8_1-B_4_10B_4_2+B_8_2-B_4_11B_4_3+B_8_3-B_4_12B_4_4+B_8_4-B_4_13B_4_5+B_8_5-B_4_14C_6_1C_6_2C_6_3C_6_4C_7_1C_7_2C_7_3C_7_4C_8_1C_8_2C_8_3C_8_4C_9_1C_9_2C_9_3C_9_4C_1_1+C_10_1-C_1_5C_1_2+C_10_2-C_1_6C_1_3+C_10_3-C_1_7C_1_4+C_10_4-C_1_8C_2_1+C_11_1-C_2_5C_2_2+C_11_2-C_2_6C_2_3+C_11_3-C_2_7C_2_4+C_11_4-C_2_8C_3_1+C_12_1-C_3_5C_3_2+C_12_2-C_3_6C_3_3+C_12_3-C_3_7C_3_4+C_12_4-C_3_8C_4_1+C_13_1-C_4_5C_4_2+C_13_2-C_4_6C_4_3+C_13_3-C_4_7C_4_4+C_13_4-C_4_8C_5_1+C_14_1-C_5_5C_5_2+C_14_2-C_5_6C_5_3+C_14_3-C_5_7C_5_4+C_14_4-C_5_8TraceMulA_1_1A_1_2A_1_3A_1_4A_1_5A_1_6A_1_7A_1_8A_2_1A_2_2A_2_3A_2_4A_2_5A_2_6A_2_7A_2_8A_3_1A_3_2A_3_3A_3_4A_3_5A_3_6A_3_7A_3_8A_4_1A_4_2A_4_3A_4_4A_4_5A_4_6A_4_7A_4_8A_5_1A_5_2A_5_3A_5_4A_5_5A_5_6A_5_7A_5_8A_6_1A_6_2A_6_3A_6_4A_6_5A_6_6A_6_7A_6_8A_7_1A_7_2A_7_3A_7_4A_7_5A_7_6A_7_7A_7_8A_8_1A_8_2A_8_3A_8_4A_8_5A_8_6A_8_7A_8_8B_1_1B_1_2B_1_3B_1_4B_1_5B_1_6B_1_7B_1_8B_1_9B_1_10B_1_11B_1_12B_1_13B_1_14B_2_1B_2_2B_2_3B_2_4B_2_5B_2_6B_2_7B_2_8B_2_9B_2_10B_2_11B_2_12B_2_13B_2_14B_3_1B_3_2B_3_3B_3_4B_3_5B_3_6B_3_7B_3_8B_3_9B_3_10B_3_11B_3_12B_3_13B_3_14B_4_1B_4_2B_4_3B_4_4B_4_5B_4_6B_4_7B_4_8B_4_9B_4_10B_4_11B_4_12B_4_13B_4_14B_5_1B_5_2B_5_3B_5_4B_5_5B_5_6B_5_7B_5_8B_5_9B_5_10B_5_11B_5_12B_5_13B_5_14B_6_1B_6_2B_6_3B_6_4B_6_5B_6_6B_6_7B_6_8B_6_9B_6_10B_6_11B_6_12B_6_13B_6_14B_7_1B_7_2B_7_3B_7_4B_7_5B_7_6B_7_7B_7_8B_7_9B_7_10B_7_11B_7_12B_7_13B_7_14B_8_1B_8_2B_8_3B_8_4B_8_5B_8_6B_8_7B_8_8B_8_9B_8_10B_8_11B_8_12B_8_13B_8_14C_1_1C_1_2C_1_3C_1_4C_1_5C_1_6C_1_7C_1_8C_2_1C_2_2C_2_3C_2_4C_2_5C_2_6C_2_7C_2_8C_3_1C_3_2C_3_3C_3_4C_3_5C_3_6C_3_7C_3_8C_4_1C_4_2C_4_3C_4_4C_4_5C_4_6C_4_7C_4_8C_5_1C_5_2C_5_3C_5_4C_5_5C_5_6C_5_7C_5_8C_6_1C_6_2C_6_3C_6_4C_6_5C_6_6C_6_7C_6_8C_7_1C_7_2C_7_3C_7_4C_7_5C_7_6C_7_7C_7_8C_8_1C_8_2C_8_3C_8_4C_8_5C_8_6C_8_7C_8_8C_9_1C_9_2C_9_3C_9_4C_9_5C_9_6C_9_7C_9_8C_10_1C_10_2C_10_3C_10_4C_10_5C_10_6C_10_7C_10_8C_11_1C_11_2C_11_3C_11_4C_11_5C_11_6C_11_7C_11_8C_12_1C_12_2C_12_3C_12_4C_12_5C_12_6C_12_7C_12_8C_13_1C_13_2C_13_3C_13_4C_13_5C_13_6C_13_7C_13_8C_14_1C_14_2C_14_3C_14_4C_14_5C_14_6C_14_7C_14_8TraceMulA_1_1A_1_5A_1_2A_1_6A_1_3A_1_7A_1_4A_1_8A_2_1A_2_5A_2_2A_2_6A_2_3A_2_7A_2_4A_2_8A_3_1A_3_5A_3_2A_3_6A_3_3A_3_7A_3_4A_3_8A_4_1A_4_5A_4_2A_4_6A_4_3A_4_7A_4_4A_4_8B_1_1B_1_10B_1_2B_1_11B_1_3B_1_12B_1_4B_1_13B_1_5B_1_14B_2_1B_2_10B_2_2B_2_11B_2_3B_2_12B_2_4B_2_13B_2_5B_2_14B_3_1B_3_10B_3_2B_3_11B_3_3B_3_12B_3_4B_3_13B_3_5B_3_14B_4_1B_4_10B_4_2B_4_11B_4_3B_4_12B_4_4B_4_13B_4_5B_4_14C_1_1C_1_5C_1_2C_1_6C_1_3C_1_7C_1_4C_1_8C_2_1C_2_5C_2_2C_2_6C_2_3C_2_7C_2_4C_2_8C_3_1C_3_5C_3_2C_3_6C_3_3C_3_7C_3_4C_3_8C_4_1C_4_5C_4_2C_4_6C_4_3C_4_7C_4_4C_4_8C_5_1C_5_5C_5_2C_5_6C_5_3C_5_7C_5_4C_5_8TraceMulA_1_1A_5_1A_1_2A_5_2A_1_3A_5_3A_1_4A_5_4A_2_1A_6_1A_2_2A_6_2A_2_3A_6_3A_2_4A_6_4A_3_1A_7_1A_3_2A_7_2A_3_3A_7_3A_3_4A_7_4A_4_1A_8_1A_4_2A_8_2A_4_3A_8_3A_4_4A_8_4B_1_1B_5_1B_1_2B_5_2B_1_3B_5_3B_1_4B_5_4B_1_5B_5_5B_2_1B_6_1B_2_2B_6_2B_2_3B_6_3B_2_4B_6_4B_2_5B_6_5B_3_1B_7_1B_3_2B_7_2B_3_3B_7_3B_3_4B_7_4B_3_5B_7_5B_4_1B_8_1B_4_2B_8_2B_4_3B_8_3B_4_4B_8_4B_4_5B_8_5C_1_1C_10_1C_1_2C_10_2C_1_3C_10_3C_1_4C_10_4C_2_1C_11_1C_2_2C_11_2C_2_3C_11_3C_2_4C_11_4C_3_1C_12_1C_3_2C_12_2C_3_3C_12_3C_3_4C_12_4C_4_1C_13_1C_4_2C_13_2C_4_3C_13_3C_4_4C_13_4C_5_1C_14_1C_5_2C_14_2C_5_3C_14_3C_5_4C_14_4TraceMulA_5_5A_5_6A_5_7A_5_8A_6_5A_6_6A_6_7A_6_8A_7_5A_7_6A_7_7A_7_8A_8_5A_8_6A_8_7A_8_8B_5_6B_5_7B_5_8B_5_9B_5_10B_5_11B_5_12B_5_13B_5_14B_6_6B_6_7B_6_8B_6_9B_6_10B_6_11B_6_12B_6_13B_6_14B_7_6B_7_7B_7_8B_7_9B_7_10B_7_11B_7_12B_7_13B_7_14B_8_6B_8_7B_8_8B_8_9B_8_10B_8_11B_8_12B_8_13B_8_14C_6_5C_6_6C_6_7C_6_8C_7_5C_7_6C_7_7C_7_8C_8_5C_8_6C_8_7C_8_8C_9_5C_9_6C_9_7C_9_8C_10_5C_10_6C_10_7C_10_8C_11_5C_11_6C_11_7C_11_8C_12_5C_12_6C_12_7C_12_8C_13_5C_13_6C_13_7C_13_8C_14_5C_14_6C_14_7C_14_8TraceMulA_1_5A_1_6A_1_7A_1_8A_2_5A_2_6A_2_7A_2_8A_3_5A_3_6A_3_7A_3_8A_4_5A_4_6A_4_7A_4_8B_1_6B_5_6B_1_7B_5_7B_1_8B_5_8B_1_9B_5_9B_1_1B_5_1B_1_10B_5_10B_1_2B_5_2B_1_11B_5_11B_1_3B_5_3B_1_12B_5_12B_1_4B_5_4B_1_13B_5_13B_1_5B_5_5B_1_14B_5_14B_2_6B_6_6B_2_7B_6_7B_2_8B_6_8B_2_9B_6_9B_2_1B_6_1B_2_10B_6_10B_2_2B_6_2B_2_11B_6_11B_2_3B_6_3B_2_12B_6_12B_2_4B_6_4B_2_13B_6_13B_2_5B_6_5B_2_14B_6_14B_3_6B_7_6B_3_7B_7_7B_3_8B_7_8B_3_9B_7_9B_7_1B_3_1B_7_10B_3_10B_3_2B_7_2B_3_11B_7_11B_3_3B_7_3B_3_12B_7_12B_3_4B_7_4B_3_13B_7_13B_3_5B_7_5B_3_14B_7_14B_4_6B_8_6B_4_7B_8_7B_4_8B_8_8B_4_9B_8_9B_4_1B_8_1B_4_10B_8_10B_4_2B_8_2B_4_11B_8_11B_4_3B_8_3B_4_12B_8_12B_4_4B_8_4B_4_13B_8_13B_4_5B_8_5B_4_14B_8_14C_6_1C_6_2C_6_3C_6_4C_7_1C_7_2C_7_3C_7_4C_8_1C_8_2C_8_3C_8_4C_9_1C_9_2C_9_3C_9_4C_10_1C_10_2C_10_3C_10_4C_11_1C_11_2C_11_3C_11_4C_12_1C_12_2C_12_3C_12_4C_13_1C_13_2C_13_3C_13_4C_14_1C_14_2C_14_3C_14_4TraceMulA_1_1A_5_1A_1_5A_5_5A_1_2A_5_2A_1_6A_5_6A_1_3A_5_3A_1_7A_5_7A_1_4A_5_4A_1_8A_5_8A_2_1A_6_1A_2_5A_6_5A_2_2A_6_2A_2_6A_6_6A_2_3A_6_3A_2_7A_6_7A_2_4A_6_4A_2_8A_6_8A_3_1A_7_1A_3_5A_7_5A_3_2A_7_2A_3_6A_7_6A_3_3A_7_3A_3_7A_7_7A_3_4A_7_4A_3_8A_7_8A_4_1A_8_1A_4_5A_8_5A_4_2A_8_2A_4_6A_8_6A_4_3A_8_3A_4_7A_8_7A_4_4A_8_4A_4_8A_8_8B_5_1B_5_2B_5_3B_5_4B_5_5B_6_1B_6_2B_6_3B_6_4B_6_5B_7_1B_7_2B_7_3B_7_4B_7_5B_8_1B_8_2B_8_3B_8_4B_8_5C_1_5C_1_6C_1_7C_1_8C_2_5C_2_6C_2_7C_2_8C_3_5C_3_6C_3_7C_3_8C_4_5C_4_6C_4_7C_4_8C_5_5C_5_6C_5_7C_5_8TraceMulA_5_1A_5_2A_5_3A_5_4A_6_1A_6_2A_6_3A_6_4A_7_1A_7_2A_7_3A_7_4A_8_1A_8_2A_8_3A_8_4B_1_6B_1_7B_1_8B_1_9B_1_10B_1_11B_1_12B_1_13B_1_14B_2_6B_2_7B_2_8B_2_9B_2_10B_2_11B_2_12B_2_13B_2_14B_3_6B_3_7B_3_8B_3_9B_3_10B_3_11B_3_12B_3_13B_3_14B_4_6B_4_7B_4_8B_4_9B_4_10B_4_11B_4_12B_4_13B_4_14C_6_1C_6_5C_6_2C_6_6C_6_3C_6_7C_6_4C_6_8C_7_1C_7_5C_7_2C_7_6C_7_3C_7_7C_7_4C_7_8C_8_1C_8_5C_8_2C_8_6C_8_3C_8_7C_8_4C_8_8C_9_1C_9_5C_9_2C_9_6C_9_3C_9_7C_9_4C_9_8C_1_1C_10_1C_1_5C_10_5C_1_2C_10_2C_1_6C_10_6C_1_3C_10_3C_1_7C_10_7C_1_4C_10_4C_1_8C_10_8C_2_1C_11_1C_2_5C_11_5C_2_2C_11_2C_2_6C_11_6C_2_3C_11_3C_2_7C_11_7C_2_4C_11_4C_2_8C_11_8C_3_1C_12_1C_3_5C_12_5C_3_2C_12_2C_3_6C_12_6C_3_3C_12_3C_3_7C_12_7C_3_4C_12_4C_3_8C_12_8C_4_1C_13_1C_4_5C_13_5C_4_2C_13_2C_4_6C_13_6C_4_3C_13_3C_4_7C_13_7C_4_4C_13_4C_4_8C_13_8C_5_1C_14_1C_5_5C_14_5C_5_2C_14_2C_5_6C_14_6C_5_3C_14_3C_5_7C_14_7C_5_4C_14_4C_5_8C_14_8TraceMulA_1_1A_5_1A_1_5A_1_2A_5_2A_1_6A_1_3A_5_3A_1_7A_1_4A_5_4A_1_8A_2_1A_6_1A_2_5A_2_2A_6_2A_2_6A_2_3A_6_3A_2_7A_2_4A_6_4A_2_8A_3_1A_7_1A_3_5A_3_2A_7_2A_3_6A_3_3A_7_3A_3_7A_3_4A_7_4A_3_8A_4_1A_8_1A_4_5A_4_2A_8_2A_4_6A_4_3A_8_3A_4_7A_4_4A_8_4A_4_8B_1_6B_1_7B_1_8B_1_9B_1_1B_5_1B_1_10B_1_2B_5_2B_1_11B_1_3B_5_3B_1_12B_1_4B_5_4B_1_13B_1_5B_5_5B_1_14B_2_6B_2_7B_2_8B_2_9B_2_1B_6_1B_2_10B_2_2B_6_2B_2_11B_2_3B_6_3B_2_12B_2_4B_6_4B_2_13B_2_5B_6_5B_2_14B_3_6B_3_7B_3_8B_3_9B_3_1B_7_1B_3_10B_3_2B_7_2B_3_11B_3_3B_7_3B_3_12B_3_4B_7_4B_3_13B_3_5B_7_5B_3_14B_4_6B_4_7B_4_8B_4_9B_4_1B_8_1B_4_10B_4_2B_8_2B_4_11B_4_3B_8_3B_4_12B_4_4B_8_4B_4_13B_4_5B_8_5B_4_14C_6_1C_6_2C_6_3C_6_4C_7_1C_7_2C_7_3C_7_4C_8_1C_8_2C_8_3C_8_4C_9_1C_9_2C_9_3C_9_4C_1_1C_10_1C_1_5C_1_2C_10_2C_1_6C_1_3C_10_3C_1_7C_1_4C_10_4C_1_8C_2_1C_11_1C_2_5C_2_2C_11_2C_2_6C_2_3C_11_3C_2_7C_2_4C_11_4C_2_8C_3_1C_12_1C_3_5C_3_2C_12_2C_3_6C_3_3C_12_3C_3_7C_3_4C_12_4C_3_8C_4_1C_13_1C_4_5C_4_2C_13_2C_4_6C_4_3C_13_3C_4_7C_4_4C_13_4C_4_8C_5_1C_14_1C_5_5C_5_2C_14_2C_5_6C_5_3C_14_3C_5_7C_5_4C_14_4C_5_8Trace(Mul(Matrix(8, 8, [[A_1_1,A_1_2,A_1_3,A_1_4,A_1_5,A_1_6,A_1_7,A_1_8],[A_2_1,A_2_2,A_2_3,A_2_4,A_2_5,A_2_6,A_2_7,A_2_8],[A_3_1,A_3_2,A_3_3,A_3_4,A_3_5,A_3_6,A_3_7,A_3_8],[A_4_1,A_4_2,A_4_3,A_4_4,A_4_5,A_4_6,A_4_7,A_4_8],[A_5_1,A_5_2,A_5_3,A_5_4,A_5_5,A_5_6,A_5_7,A_5_8],[A_6_1,A_6_2,A_6_3,A_6_4,A_6_5,A_6_6,A_6_7,A_6_8],[A_7_1,A_7_2,A_7_3,A_7_4,A_7_5,A_7_6,A_7_7,A_7_8],[A_8_1,A_8_2,A_8_3,A_8_4,A_8_5,A_8_6,A_8_7,A_8_8]]),Matrix(8, 14, [[B_1_1,B_1_2,B_1_3,B_1_4,B_1_5,B_1_6,B_1_7,B_1_8,B_1_9,B_1_10,B_1_11,B_1_12,B_1_13,B_1_14],[B_2_1,B_2_2,B_2_3,B_2_4,B_2_5,B_2_6,B_2_7,B_2_8,B_2_9,B_2_10,B_2_11,B_2_12,B_2_13,B_2_14],[B_3_1,B_3_2,B_3_3,B_3_4,B_3_5,B_3_6,B_3_7,B_3_8,B_3_9,B_3_10,B_3_11,B_3_12,B_3_13,B_3_14],[B_4_1,B_4_2,B_4_3,B_4_4,B_4_5,B_4_6,B_4_7,B_4_8,B_4_9,B_4_10,B_4_11,B_4_12,B_4_13,B_4_14],[B_5_1,B_5_2,B_5_3,B_5_4,B_5_5,B_5_6,B_5_7,B_5_8,B_5_9,B_5_10,B_5_11,B_5_12,B_5_13,B_5_14],[B_6_1,B_6_2,B_6_3,B_6_4,B_6_5,B_6_6,B_6_7,B_6_8,B_6_9,B_6_10,B_6_11,B_6_12,B_6_13,B_6_14],[B_7_1,B_7_2,B_7_3,B_7_4,B_7_5,B_7_6,B_7_7,B_7_8,B_7_9,B_7_10,B_7_11,B_7_12,B_7_13,B_7_14],[B_8_1,B_8_2,B_8_3,B_8_4,B_8_5,B_8_6,B_8_7,B_8_8,B_8_9,B_8_10,B_8_11,B_8_12,B_8_13,B_8_14]]),Matrix(14, 8, [[C_1_1,C_1_2,C_1_3,C_1_4,C_1_5,C_1_6,C_1_7,C_1_8],[C_2_1,C_2_2,C_2_3,C_2_4,C_2_5,C_2_6,C_2_7,C_2_8],[C_3_1,C_3_2,C_3_3,C_3_4,C_3_5,C_3_6,C_3_7,C_3_8],[C_4_1,C_4_2,C_4_3,C_4_4,C_4_5,C_4_6,C_4_7,C_4_8],[C_5_1,C_5_2,C_5_3,C_5_4,C_5_5,C_5_6,C_5_7,C_5_8],[C_6_1,C_6_2,C_6_3,C_6_4,C_6_5,C_6_6,C_6_7,C_6_8],[C_7_1,C_7_2,C_7_3,C_7_4,C_7_5,C_7_6,C_7_7,C_7_8],[C_8_1,C_8_2,C_8_3,C_8_4,C_8_5,C_8_6,C_8_7,C_8_8],[C_9_1,C_9_2,C_9_3,C_9_4,C_9_5,C_9_6,C_9_7,C_9_8],[C_10_1,C_10_2,C_10_3,C_10_4,C_10_5,C_10_6,C_10_7,C_10_8],[C_11_1,C_11_2,C_11_3,C_11_4,C_11_5,C_11_6,C_11_7,C_11_8],[C_12_1,C_12_2,C_12_3,C_12_4,C_12_5,C_12_6,C_12_7,C_12_8],[C_13_1,C_13_2,C_13_3,C_13_4,C_13_5,C_13_6,C_13_7,C_13_8],[C_14_1,C_14_2,C_14_3,C_14_4,C_14_5,C_14_6,C_14_7,C_14_8]]))) = Trace(Mul(Matrix(4, 4, [[A_1_1-A_1_5,A_1_2-A_1_6,A_1_3-A_1_7,A_1_4-A_1_8],[A_2_1-A_2_5,A_2_2-A_2_6,A_2_3-A_2_7,A_2_4-A_2_8],[A_3_1-A_3_5,A_3_2-A_3_6,A_3_3-A_3_7,A_3_4-A_3_8],[A_4_1-A_4_5,A_4_2-A_4_6,A_4_3-A_4_7,A_4_4-A_4_8]]),Matrix(4, 5, [[B_1_1-B_1_10,B_1_2-B_1_11,B_1_3-B_1_12,B_1_4-B_1_13,B_1_5-B_1_14],[B_2_1-B_2_10,B_2_2-B_2_11,B_2_3-B_2_12,B_2_4-B_2_13,B_2_5-B_2_14],[B_3_1-B_3_10,B_3_2-B_3_11,B_3_3-B_3_12,B_3_4-B_3_13,B_3_5-B_3_14],[B_4_1-B_4_10,B_4_2-B_4_11,B_4_3-B_4_12,B_4_4-B_4_13,B_4_5-B_4_14]]),Matrix(5, 4, [[C_1_1-C_1_5,C_1_2-C_1_6,C_1_3-C_1_7,C_1_4-C_1_8],[C_2_1-C_2_5,C_2_2-C_2_6,C_2_3-C_2_7,C_2_4-C_2_8],[C_3_1-C_3_5,C_3_2-C_3_6,C_3_3-C_3_7,C_3_4-C_3_8],[C_4_1-C_4_5,C_4_2-C_4_6,C_4_3-C_4_7,C_4_4-C_4_8],[C_5_1-C_5_5,C_5_2-C_5_6,C_5_3-C_5_7,C_5_4-C_5_8]])))+Trace(Mul(Matrix(4, 4, [[A_1_1+A_5_1,A_1_2+A_5_2,A_1_3+A_5_3,A_1_4+A_5_4],[A_2_1+A_6_1,A_2_2+A_6_2,A_2_3+A_6_3,A_2_4+A_6_4],[A_3_1+A_7_1,A_3_2+A_7_2,A_3_3+A_7_3,A_3_4+A_7_4],[A_4_1+A_8_1,A_4_2+A_8_2,A_4_3+A_8_3,A_4_4+A_8_4]]),Matrix(4, 5, [[B_1_1+B_5_1,B_1_2+B_5_2,B_1_3+B_5_3,B_1_4+B_5_4,B_1_5+B_5_5],[B_2_1+B_6_1,B_2_2+B_6_2,B_2_3+B_6_3,B_2_4+B_6_4,B_2_5+B_6_5],[B_3_1+B_7_1,B_3_2+B_7_2,B_3_3+B_7_3,B_3_4+B_7_4,B_3_5+B_7_5],[B_4_1+B_8_1,B_4_2+B_8_2,B_4_3+B_8_3,B_4_4+B_8_4,B_4_5+B_8_5]]),Matrix(5, 4, [[C_1_1+C_10_1,C_1_2+C_10_2,C_1_3+C_10_3,C_1_4+C_10_4],[C_2_1+C_11_1,C_2_2+C_11_2,C_2_3+C_11_3,C_2_4+C_11_4],[C_3_1+C_12_1,C_3_2+C_12_2,C_3_3+C_12_3,C_3_4+C_12_4],[C_4_1+C_13_1,C_4_2+C_13_2,C_4_3+C_13_3,C_4_4+C_13_4],[C_5_1+C_14_1,C_5_2+C_14_2,C_5_3+C_14_3,C_5_4+C_14_4]])))+Trace(Mul(Matrix(4, 4, [[A_5_5,A_5_6,A_5_7,A_5_8],[A_6_5,A_6_6,A_6_7,A_6_8],[A_7_5,A_7_6,A_7_7,A_7_8],[A_8_5,A_8_6,A_8_7,A_8_8]]),Matrix(4, 9, [[B_5_6,B_5_7,B_5_8,B_5_9,B_5_10,B_5_11,B_5_12,B_5_13,B_5_14],[B_6_6,B_6_7,B_6_8,B_6_9,B_6_10,B_6_11,B_6_12,B_6_13,B_6_14],[B_7_6,B_7_7,B_7_8,B_7_9,B_7_10,B_7_11,B_7_12,B_7_13,B_7_14],[B_8_6,B_8_7,B_8_8,B_8_9,B_8_10,B_8_11,B_8_12,B_8_13,B_8_14]]),Matrix(9, 4, [[C_6_5,C_6_6,C_6_7,C_6_8],[C_7_5,C_7_6,C_7_7,C_7_8],[C_8_5,C_8_6,C_8_7,C_8_8],[C_9_5,C_9_6,C_9_7,C_9_8],[C_10_5,C_10_6,C_10_7,C_10_8],[C_11_5,C_11_6,C_11_7,C_11_8],[C_12_5,C_12_6,C_12_7,C_12_8],[C_13_5,C_13_6,C_13_7,C_13_8],[C_14_5,C_14_6,C_14_7,C_14_8]])))+Trace(Mul(Matrix(4, 4, [[A_1_5,A_1_6,A_1_7,A_1_8],[A_2_5,A_2_6,A_2_7,A_2_8],[A_3_5,A_3_6,A_3_7,A_3_8],[A_4_5,A_4_6,A_4_7,A_4_8]]),Matrix(4, 9, [[B_1_6+B_5_6,B_1_7+B_5_7,B_1_8+B_5_8,B_1_9+B_5_9,-B_1_1-B_5_1+B_1_10+B_5_10,-B_1_2-B_5_2+B_1_11+B_5_11,-B_1_3-B_5_3+B_1_12+B_5_12,-B_1_4-B_5_4+B_1_13+B_5_13,-B_1_5-B_5_5+B_1_14+B_5_14],[B_2_6+B_6_6,B_2_7+B_6_7,B_2_8+B_6_8,B_2_9+B_6_9,-B_2_1-B_6_1+B_2_10+B_6_10,-B_2_2-B_6_2+B_2_11+B_6_11,-B_2_3-B_6_3+B_2_12+B_6_12,-B_2_4-B_6_4+B_2_13+B_6_13,-B_2_5-B_6_5+B_2_14+B_6_14],[B_3_6+B_7_6,B_3_7+B_7_7,B_3_8+B_7_8,B_3_9+B_7_9,-B_7_1-B_3_1+B_7_10+B_3_10,-B_3_2-B_7_2+B_3_11+B_7_11,-B_3_3-B_7_3+B_3_12+B_7_12,-B_3_4-B_7_4+B_3_13+B_7_13,-B_3_5-B_7_5+B_3_14+B_7_14],[B_4_6+B_8_6,B_4_7+B_8_7,B_4_8+B_8_8,B_4_9+B_8_9,-B_4_1-B_8_1+B_4_10+B_8_10,-B_4_2-B_8_2+B_4_11+B_8_11,-B_4_3-B_8_3+B_4_12+B_8_12,-B_4_4-B_8_4+B_4_13+B_8_13,-B_4_5-B_8_5+B_4_14+B_8_14]]),Matrix(9, 4, [[C_6_1,C_6_2,C_6_3,C_6_4],[C_7_1,C_7_2,C_7_3,C_7_4],[C_8_1,C_8_2,C_8_3,C_8_4],[C_9_1,C_9_2,C_9_3,C_9_4],[C_10_1,C_10_2,C_10_3,C_10_4],[C_11_1,C_11_2,C_11_3,C_11_4],[C_12_1,C_12_2,C_12_3,C_12_4],[C_13_1,C_13_2,C_13_3,C_13_4],[C_14_1,C_14_2,C_14_3,C_14_4]])))+Trace(Mul(Matrix(4, 4, [[-A_1_1-A_5_1+A_1_5+A_5_5,-A_1_2-A_5_2+A_1_6+A_5_6,-A_1_3-A_5_3+A_1_7+A_5_7,-A_1_4-A_5_4+A_1_8+A_5_8],[-A_2_1-A_6_1+A_2_5+A_6_5,-A_2_2-A_6_2+A_2_6+A_6_6,-A_2_3-A_6_3+A_2_7+A_6_7,-A_2_4-A_6_4+A_2_8+A_6_8],[-A_3_1-A_7_1+A_3_5+A_7_5,-A_3_2-A_7_2+A_3_6+A_7_6,-A_3_3-A_7_3+A_3_7+A_7_7,-A_3_4-A_7_4+A_3_8+A_7_8],[-A_4_1-A_8_1+A_4_5+A_8_5,-A_4_2-A_8_2+A_4_6+A_8_6,-A_4_3-A_8_3+A_4_7+A_8_7,-A_4_4-A_8_4+A_4_8+A_8_8]]),Matrix(4, 5, [[B_5_1,B_5_2,B_5_3,B_5_4,B_5_5],[B_6_1,B_6_2,B_6_3,B_6_4,B_6_5],[B_7_1,B_7_2,B_7_3,B_7_4,B_7_5],[B_8_1,B_8_2,B_8_3,B_8_4,B_8_5]]),Matrix(5, 4, [[C_1_5,C_1_6,C_1_7,C_1_8],[C_2_5,C_2_6,C_2_7,C_2_8],[C_3_5,C_3_6,C_3_7,C_3_8],[C_4_5,C_4_6,C_4_7,C_4_8],[C_5_5,C_5_6,C_5_7,C_5_8]])))+Trace(Mul(Matrix(4, 4, [[A_5_1,A_5_2,A_5_3,A_5_4],[A_6_1,A_6_2,A_6_3,A_6_4],[A_7_1,A_7_2,A_7_3,A_7_4],[A_8_1,A_8_2,A_8_3,A_8_4]]),Matrix(4, 9, [[B_1_6,B_1_7,B_1_8,B_1_9,B_1_10,B_1_11,B_1_12,B_1_13,B_1_14],[B_2_6,B_2_7,B_2_8,B_2_9,B_2_10,B_2_11,B_2_12,B_2_13,B_2_14],[B_3_6,B_3_7,B_3_8,B_3_9,B_3_10,B_3_11,B_3_12,B_3_13,B_3_14],[B_4_6,B_4_7,B_4_8,B_4_9,B_4_10,B_4_11,B_4_12,B_4_13,B_4_14]]),Matrix(9, 4, [[-C_6_1+C_6_5,-C_6_2+C_6_6,-C_6_3+C_6_7,-C_6_4+C_6_8],[-C_7_1+C_7_5,-C_7_2+C_7_6,-C_7_3+C_7_7,-C_7_4+C_7_8],[-C_8_1+C_8_5,-C_8_2+C_8_6,-C_8_3+C_8_7,-C_8_4+C_8_8],[-C_9_1+C_9_5,-C_9_2+C_9_6,-C_9_3+C_9_7,-C_9_4+C_9_8],[-C_1_1-C_10_1+C_1_5+C_10_5,-C_1_2-C_10_2+C_1_6+C_10_6,-C_1_3-C_10_3+C_1_7+C_10_7,-C_1_4-C_10_4+C_1_8+C_10_8],[-C_2_1-C_11_1+C_2_5+C_11_5,-C_2_2-C_11_2+C_2_6+C_11_6,-C_2_3-C_11_3+C_2_7+C_11_7,-C_2_4-C_11_4+C_2_8+C_11_8],[-C_3_1-C_12_1+C_3_5+C_12_5,-C_3_2-C_12_2+C_3_6+C_12_6,-C_3_3-C_12_3+C_3_7+C_12_7,-C_3_4-C_12_4+C_3_8+C_12_8],[-C_4_1-C_13_1+C_4_5+C_13_5,-C_4_2-C_13_2+C_4_6+C_13_6,-C_4_3-C_13_3+C_4_7+C_13_7,-C_4_4-C_13_4+C_4_8+C_13_8],[-C_5_1-C_14_1+C_5_5+C_14_5,-C_5_2-C_14_2+C_5_6+C_14_6,-C_5_3-C_14_3+C_5_7+C_14_7,-C_5_4-C_14_4+C_5_8+C_14_8]])))+Trace(Mul(Matrix(4, 4, [[-A_1_1-A_5_1+A_1_5,-A_1_2-A_5_2+A_1_6,-A_1_3-A_5_3+A_1_7,-A_1_4-A_5_4+A_1_8],[-A_2_1-A_6_1+A_2_5,-A_2_2-A_6_2+A_2_6,-A_2_3-A_6_3+A_2_7,-A_2_4-A_6_4+A_2_8],[-A_3_1-A_7_1+A_3_5,-A_3_2-A_7_2+A_3_6,-A_3_3-A_7_3+A_3_7,-A_3_4-A_7_4+A_3_8],[-A_4_1-A_8_1+A_4_5,-A_4_2-A_8_2+A_4_6,-A_4_3-A_8_3+A_4_7,-A_4_4-A_8_4+A_4_8]]),Matrix(4, 9, [[-B_1_6,-B_1_7,-B_1_8,-B_1_9,B_1_1+B_5_1-B_1_10,B_1_2+B_5_2-B_1_11,B_1_3+B_5_3-B_1_12,B_1_4+B_5_4-B_1_13,B_1_5+B_5_5-B_1_14],[-B_2_6,-B_2_7,-B_2_8,-B_2_9,B_2_1+B_6_1-B_2_10,B_2_2+B_6_2-B_2_11,B_2_3+B_6_3-B_2_12,B_2_4+B_6_4-B_2_13,B_2_5+B_6_5-B_2_14],[-B_3_6,-B_3_7,-B_3_8,-B_3_9,B_3_1+B_7_1-B_3_10,B_3_2+B_7_2-B_3_11,B_3_3+B_7_3-B_3_12,B_3_4+B_7_4-B_3_13,B_3_5+B_7_5-B_3_14],[-B_4_6,-B_4_7,-B_4_8,-B_4_9,B_4_1+B_8_1-B_4_10,B_4_2+B_8_2-B_4_11,B_4_3+B_8_3-B_4_12,B_4_4+B_8_4-B_4_13,B_4_5+B_8_5-B_4_14]]),Matrix(9, 4, [[C_6_1,C_6_2,C_6_3,C_6_4],[C_7_1,C_7_2,C_7_3,C_7_4],[C_8_1,C_8_2,C_8_3,C_8_4],[C_9_1,C_9_2,C_9_3,C_9_4],[C_1_1+C_10_1-C_1_5,C_1_2+C_10_2-C_1_6,C_1_3+C_10_3-C_1_7,C_1_4+C_10_4-C_1_8],[C_2_1+C_11_1-C_2_5,C_2_2+C_11_2-C_2_6,C_2_3+C_11_3-C_2_7,C_2_4+C_11_4-C_2_8],[C_3_1+C_12_1-C_3_5,C_3_2+C_12_2-C_3_6,C_3_3+C_12_3-C_3_7,C_3_4+C_12_4-C_3_8],[C_4_1+C_13_1-C_4_5,C_4_2+C_13_2-C_4_6,C_4_3+C_13_3-C_4_7,C_4_4+C_13_4-C_4_8],[C_5_1+C_14_1-C_5_5,C_5_2+C_14_2-C_5_6,C_5_3+C_14_3-C_5_7,C_5_4+C_14_4-C_5_8]])))

N.B.: for any matrices A, B and C such that the expression Tr(Mul(A,B,C)) is defined, one can construct several trilinear homogeneous polynomials P(A,B,C) such that P(A,B,C)=Tr(Mul(A,B,C)) (P(A,B,C) variables are A,B and C's coefficients). Each trilinear P expression encodes a matrix multiplication algorithm: the coefficient in C_i_j of P(A,B,C) is the (i,j)-th entry of the matrix product Mul(A,B)=Transpose(C).

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table