Description of fast matrix multiplication algorithm: ⟨13×22×22:3778⟩

Algorithm type

X13Y16Z13+2X12Y12Z13+2X7Y14Z7+X6Y14Z7+X6Y14Z6+3X8Y8Z8+2X6Y12Z6+4X7Y8Z7+3X8Y8Z5+X7Y8Z6+X5Y8Z8+2X8Y6Z6+2X8Y4Z8+2X7Y6Z7+2X6Y6Z8+2X4Y8Z8+7X6Y6Z7+X6Y6Z6+3X5Y8Z5+4X4Y8Z4+48X4Y6Z6+3X4Y8Z3+6X4Y7Z4+32X4Y6Z5+48X4Y5Z6+2X3Y8Z4+3X4Y8Z2+9X4Y6Z4+3X3Y8Z3+3X3Y7Z4+4X2Y8Z4+72X2Y6Z6+2X4Y6Z3+X3Y8Z2+3X3Y7Z3+2X3Y6Z4+X2Y8Z3+48X2Y6Z5+72X2Y5Z6+4X8Y2Z2+2X6Y4Z2+2X4Y6Z2+123X4Y4Z4+6X3Y6Z3+3X2Y8Z2+2X2Y6Z4+2X2Y4Z6+4X2Y2Z8+X6Y4Z+2X6Y2Z3+2X5Y2Z4+26X4Y4Z3+6X4Y3Z4+2X4Y2Z5+17X3Y4Z4+2X3Y2Z6+X2Y8Z+XY8Z2+XY4Z6+3X6Y2Z2+7X4Y4Z2+6X4Y3Z3+18X4Y2Z4+12X3Y4Z3+9X3Y3Z4+25X2Y6Z2+21X2Y4Z4+3X2Y2Z6+2X6Y2Z+6X5Y2Z2+3X3Y4Z2+3X3Y3Z3+3X2Y4Z3+6X2Y2Z5+2XY2Z6+23X4Y2Z2+83X2Y4Z2+192X2Y3Z3+27X2Y2Z4+6X3Y2Z2+15X2Y4Z+63X2Y3Z2+6X2Y2Z3+18XY4Z2+288XY3Z3+12X4YZ+30X3Y2Z+36X3YZ2+6X2Y3Z+744X2Y2Z2+36X2YZ3+45XY4Z+6XY3Z2+30XY2Z3+12XYZ4+108X3YZ+62X2Y2Z+36X2YZ2+138XY3Z+86XY2Z2+108XYZ3+138X2YZ+294XY2Z+150XYZ2+234XYZX13Y16Z132X12Y12Z132X7Y14Z7X6Y14Z7X6Y14Z63X8Y8Z82X6Y12Z64X7Y8Z73X8Y8Z5X7Y8Z6X5Y8Z82X8Y6Z62X8Y4Z82X7Y6Z72X6Y6Z82X4Y8Z87X6Y6Z7X6Y6Z63X5Y8Z54X4Y8Z448X4Y6Z63X4Y8Z36X4Y7Z432X4Y6Z548X4Y5Z62X3Y8Z43X4Y8Z29X4Y6Z43X3Y8Z33X3Y7Z44X2Y8Z472X2Y6Z62X4Y6Z3X3Y8Z23X3Y7Z32X3Y6Z4X2Y8Z348X2Y6Z572X2Y5Z64X8Y2Z22X6Y4Z22X4Y6Z2123X4Y4Z46X3Y6Z33X2Y8Z22X2Y6Z42X2Y4Z64X2Y2Z8X6Y4Z2X6Y2Z32X5Y2Z426X4Y4Z36X4Y3Z42X4Y2Z517X3Y4Z42X3Y2Z6X2Y8ZXY8Z2XY4Z63X6Y2Z27X4Y4Z26X4Y3Z318X4Y2Z412X3Y4Z39X3Y3Z425X2Y6Z221X2Y4Z43X2Y2Z62X6Y2Z6X5Y2Z23X3Y4Z23X3Y3Z33X2Y4Z36X2Y2Z52XY2Z623X4Y2Z283X2Y4Z2192X2Y3Z327X2Y2Z46X3Y2Z215X2Y4Z63X2Y3Z26X2Y2Z318XY4Z2288XY3Z312X4YZ30X3Y2Z36X3YZ26X2Y3Z744X2Y2Z236X2YZ345XY4Z6XY3Z230XY2Z312XYZ4108X3YZ62X2Y2Z36X2YZ2138XY3Z86XY2Z2108XYZ3138X2YZ294XY2Z150XYZ2234XYZX^13*Y^16*Z^13+2*X^12*Y^12*Z^13+2*X^7*Y^14*Z^7+X^6*Y^14*Z^7+X^6*Y^14*Z^6+3*X^8*Y^8*Z^8+2*X^6*Y^12*Z^6+4*X^7*Y^8*Z^7+3*X^8*Y^8*Z^5+X^7*Y^8*Z^6+X^5*Y^8*Z^8+2*X^8*Y^6*Z^6+2*X^8*Y^4*Z^8+2*X^7*Y^6*Z^7+2*X^6*Y^6*Z^8+2*X^4*Y^8*Z^8+7*X^6*Y^6*Z^7+X^6*Y^6*Z^6+3*X^5*Y^8*Z^5+4*X^4*Y^8*Z^4+48*X^4*Y^6*Z^6+3*X^4*Y^8*Z^3+6*X^4*Y^7*Z^4+32*X^4*Y^6*Z^5+48*X^4*Y^5*Z^6+2*X^3*Y^8*Z^4+3*X^4*Y^8*Z^2+9*X^4*Y^6*Z^4+3*X^3*Y^8*Z^3+3*X^3*Y^7*Z^4+4*X^2*Y^8*Z^4+72*X^2*Y^6*Z^6+2*X^4*Y^6*Z^3+X^3*Y^8*Z^2+3*X^3*Y^7*Z^3+2*X^3*Y^6*Z^4+X^2*Y^8*Z^3+48*X^2*Y^6*Z^5+72*X^2*Y^5*Z^6+4*X^8*Y^2*Z^2+2*X^6*Y^4*Z^2+2*X^4*Y^6*Z^2+123*X^4*Y^4*Z^4+6*X^3*Y^6*Z^3+3*X^2*Y^8*Z^2+2*X^2*Y^6*Z^4+2*X^2*Y^4*Z^6+4*X^2*Y^2*Z^8+X^6*Y^4*Z+2*X^6*Y^2*Z^3+2*X^5*Y^2*Z^4+26*X^4*Y^4*Z^3+6*X^4*Y^3*Z^4+2*X^4*Y^2*Z^5+17*X^3*Y^4*Z^4+2*X^3*Y^2*Z^6+X^2*Y^8*Z+X*Y^8*Z^2+X*Y^4*Z^6+3*X^6*Y^2*Z^2+7*X^4*Y^4*Z^2+6*X^4*Y^3*Z^3+18*X^4*Y^2*Z^4+12*X^3*Y^4*Z^3+9*X^3*Y^3*Z^4+25*X^2*Y^6*Z^2+21*X^2*Y^4*Z^4+3*X^2*Y^2*Z^6+2*X^6*Y^2*Z+6*X^5*Y^2*Z^2+3*X^3*Y^4*Z^2+3*X^3*Y^3*Z^3+3*X^2*Y^4*Z^3+6*X^2*Y^2*Z^5+2*X*Y^2*Z^6+23*X^4*Y^2*Z^2+83*X^2*Y^4*Z^2+192*X^2*Y^3*Z^3+27*X^2*Y^2*Z^4+6*X^3*Y^2*Z^2+15*X^2*Y^4*Z+63*X^2*Y^3*Z^2+6*X^2*Y^2*Z^3+18*X*Y^4*Z^2+288*X*Y^3*Z^3+12*X^4*Y*Z+30*X^3*Y^2*Z+36*X^3*Y*Z^2+6*X^2*Y^3*Z+744*X^2*Y^2*Z^2+36*X^2*Y*Z^3+45*X*Y^4*Z+6*X*Y^3*Z^2+30*X*Y^2*Z^3+12*X*Y*Z^4+108*X^3*Y*Z+62*X^2*Y^2*Z+36*X^2*Y*Z^2+138*X*Y^3*Z+86*X*Y^2*Z^2+108*X*Y*Z^3+138*X^2*Y*Z+294*X*Y^2*Z+150*X*Y*Z^2+234*X*Y*Z

Algorithm definition

The algorithm ⟨13×22×22:3778⟩ could be constructed using the following decomposition:

⟨13×22×22:3778⟩ = ⟨7×11×11:577⟩ + ⟨6×11×11:490⟩ + ⟨7×11×11:577⟩ + ⟨6×11×11:490⟩ + ⟨6×11×11:490⟩ + ⟨7×11×11:577⟩ + ⟨7×11×11:577⟩.

This decomposition is defined by the following equality:

TraceMulA_1_1A_1_2A_1_3A_1_4A_1_5A_1_6A_1_7A_1_8A_1_9A_1_10A_1_11A_1_12A_1_13A_1_14A_1_15A_1_16A_1_17A_1_18A_1_19A_1_20A_1_21A_1_22A_2_1A_2_2A_2_3A_2_4A_2_5A_2_6A_2_7A_2_8A_2_9A_2_10A_2_11A_2_12A_2_13A_2_14A_2_15A_2_16A_2_17A_2_18A_2_19A_2_20A_2_21A_2_22A_3_1A_3_2A_3_3A_3_4A_3_5A_3_6A_3_7A_3_8A_3_9A_3_10A_3_11A_3_12A_3_13A_3_14A_3_15A_3_16A_3_17A_3_18A_3_19A_3_20A_3_21A_3_22A_4_1A_4_2A_4_3A_4_4A_4_5A_4_6A_4_7A_4_8A_4_9A_4_10A_4_11A_4_12A_4_13A_4_14A_4_15A_4_16A_4_17A_4_18A_4_19A_4_20A_4_21A_4_22A_5_1A_5_2A_5_3A_5_4A_5_5A_5_6A_5_7A_5_8A_5_9A_5_10A_5_11A_5_12A_5_13A_5_14A_5_15A_5_16A_5_17A_5_18A_5_19A_5_20A_5_21A_5_22A_6_1A_6_2A_6_3A_6_4A_6_5A_6_6A_6_7A_6_8A_6_9A_6_10A_6_11A_6_12A_6_13A_6_14A_6_15A_6_16A_6_17A_6_18A_6_19A_6_20A_6_21A_6_22A_7_1A_7_2A_7_3A_7_4A_7_5A_7_6A_7_7A_7_8A_7_9A_7_10A_7_11A_7_12A_7_13A_7_14A_7_15A_7_16A_7_17A_7_18A_7_19A_7_20A_7_21A_7_22A_8_1A_8_2A_8_3A_8_4A_8_5A_8_6A_8_7A_8_8A_8_9A_8_10A_8_11A_8_12A_8_13A_8_14A_8_15A_8_16A_8_17A_8_18A_8_19A_8_20A_8_21A_8_22A_9_1A_9_2A_9_3A_9_4A_9_5A_9_6A_9_7A_9_8A_9_9A_9_10A_9_11A_9_12A_9_13A_9_14A_9_15A_9_16A_9_17A_9_18A_9_19A_9_20A_9_21A_9_22A_10_1A_10_2A_10_3A_10_4A_10_5A_10_6A_10_7A_10_8A_10_9A_10_10A_10_11A_10_12A_10_13A_10_14A_10_15A_10_16A_10_17A_10_18A_10_19A_10_20A_10_21A_10_22A_11_1A_11_2A_11_3A_11_4A_11_5A_11_6A_11_7A_11_8A_11_9A_11_10A_11_11A_11_12A_11_13A_11_14A_11_15A_11_16A_11_17A_11_18A_11_19A_11_20A_11_21A_11_22A_12_1A_12_2A_12_3A_12_4A_12_5A_12_6A_12_7A_12_8A_12_9A_12_10A_12_11A_12_12A_12_13A_12_14A_12_15A_12_16A_12_17A_12_18A_12_19A_12_20A_12_21A_12_22A_13_1A_13_2A_13_3A_13_4A_13_5A_13_6A_13_7A_13_8A_13_9A_13_10A_13_11A_13_12A_13_13A_13_14A_13_15A_13_16A_13_17A_13_18A_13_19A_13_20A_13_21A_13_22B_1_1B_1_2B_1_3B_1_4B_1_5B_1_6B_1_7B_1_8B_1_9B_1_10B_1_11B_1_12B_1_13B_1_14B_1_15B_1_16B_1_17B_1_18B_1_19B_1_20B_1_21B_1_22B_2_1B_2_2B_2_3B_2_4B_2_5B_2_6B_2_7B_2_8B_2_9B_2_10B_2_11B_2_12B_2_13B_2_14B_2_15B_2_16B_2_17B_2_18B_2_19B_2_20B_2_21B_2_22B_3_1B_3_2B_3_3B_3_4B_3_5B_3_6B_3_7B_3_8B_3_9B_3_10B_3_11B_3_12B_3_13B_3_14B_3_15B_3_16B_3_17B_3_18B_3_19B_3_20B_3_21B_3_22B_4_1B_4_2B_4_3B_4_4B_4_5B_4_6B_4_7B_4_8B_4_9B_4_10B_4_11B_4_12B_4_13B_4_14B_4_15B_4_16B_4_17B_4_18B_4_19B_4_20B_4_21B_4_22B_5_1B_5_2B_5_3B_5_4B_5_5B_5_6B_5_7B_5_8B_5_9B_5_10B_5_11B_5_12B_5_13B_5_14B_5_15B_5_16B_5_17B_5_18B_5_19B_5_20B_5_21B_5_22B_6_1B_6_2B_6_3B_6_4B_6_5B_6_6B_6_7B_6_8B_6_9B_6_10B_6_11B_6_12B_6_13B_6_14B_6_15B_6_16B_6_17B_6_18B_6_19B_6_20B_6_21B_6_22B_7_1B_7_2B_7_3B_7_4B_7_5B_7_6B_7_7B_7_8B_7_9B_7_10B_7_11B_7_12B_7_13B_7_14B_7_15B_7_16B_7_17B_7_18B_7_19B_7_20B_7_21B_7_22B_8_1B_8_2B_8_3B_8_4B_8_5B_8_6B_8_7B_8_8B_8_9B_8_10B_8_11B_8_12B_8_13B_8_14B_8_15B_8_16B_8_17B_8_18B_8_19B_8_20B_8_21B_8_22B_9_1B_9_2B_9_3B_9_4B_9_5B_9_6B_9_7B_9_8B_9_9B_9_10B_9_11B_9_12B_9_13B_9_14B_9_15B_9_16B_9_17B_9_18B_9_19B_9_20B_9_21B_9_22B_10_1B_10_2B_10_3B_10_4B_10_5B_10_6B_10_7B_10_8B_10_9B_10_10B_10_11B_10_12B_10_13B_10_14B_10_15B_10_16B_10_17B_10_18B_10_19B_10_20B_10_21B_10_22B_11_1B_11_2B_11_3B_11_4B_11_5B_11_6B_11_7B_11_8B_11_9B_11_10B_11_11B_11_12B_11_13B_11_14B_11_15B_11_16B_11_17B_11_18B_11_19B_11_20B_11_21B_11_22B_12_1B_12_2B_12_3B_12_4B_12_5B_12_6B_12_7B_12_8B_12_9B_12_10B_12_11B_12_12B_12_13B_12_14B_12_15B_12_16B_12_17B_12_18B_12_19B_12_20B_12_21B_12_22B_13_1B_13_2B_13_3B_13_4B_13_5B_13_6B_13_7B_13_8B_13_9B_13_10B_13_11B_13_12B_13_13B_13_14B_13_15B_13_16B_13_17B_13_18B_13_19B_13_20B_13_21B_13_22B_14_1B_14_2B_14_3B_14_4B_14_5B_14_6B_14_7B_14_8B_14_9B_14_10B_14_11B_14_12B_14_13B_14_14B_14_15B_14_16B_14_17B_14_18B_14_19B_14_20B_14_21B_14_22B_15_1B_15_2B_15_3B_15_4B_15_5B_15_6B_15_7B_15_8B_15_9B_15_10B_15_11B_15_12B_15_13B_15_14B_15_15B_15_16B_15_17B_15_18B_15_19B_15_20B_15_21B_15_22B_16_1B_16_2B_16_3B_16_4B_16_5B_16_6B_16_7B_16_8B_16_9B_16_10B_16_11B_16_12B_16_13B_16_14B_16_15B_16_16B_16_17B_16_18B_16_19B_16_20B_16_21B_16_22B_17_1B_17_2B_17_3B_17_4B_17_5B_17_6B_17_7B_17_8B_17_9B_17_10B_17_11B_17_12B_17_13B_17_14B_17_15B_17_16B_17_17B_17_18B_17_19B_17_20B_17_21B_17_22B_18_1B_18_2B_18_3B_18_4B_18_5B_18_6B_18_7B_18_8B_18_9B_18_10B_18_11B_18_12B_18_13B_18_14B_18_15B_18_16B_18_17B_18_18B_18_19B_18_20B_18_21B_18_22B_19_1B_19_2B_19_3B_19_4B_19_5B_19_6B_19_7B_19_8B_19_9B_19_10B_19_11B_19_12B_19_13B_19_14B_19_15B_19_16B_19_17B_19_18B_19_19B_19_20B_19_21B_19_22B_20_1B_20_2B_20_3B_20_4B_20_5B_20_6B_20_7B_20_8B_20_9B_20_10B_20_11B_20_12B_20_13B_20_14B_20_15B_20_16B_20_17B_20_18B_20_19B_20_20B_20_21B_20_22B_21_1B_21_2B_21_3B_21_4B_21_5B_21_6B_21_7B_21_8B_21_9B_21_10B_21_11B_21_12B_21_13B_21_14B_21_15B_21_16B_21_17B_21_18B_21_19B_21_20B_21_21B_21_22B_22_1B_22_2B_22_3B_22_4B_22_5B_22_6B_22_7B_22_8B_22_9B_22_10B_22_11B_22_12B_22_13B_22_14B_22_15B_22_16B_22_17B_22_18B_22_19B_22_20B_22_21B_22_22C_1_1C_1_2C_1_3C_1_4C_1_5C_1_6C_1_7C_1_8C_1_9C_1_10C_1_11C_1_12C_1_13C_2_1C_2_2C_2_3C_2_4C_2_5C_2_6C_2_7C_2_8C_2_9C_2_10C_2_11C_2_12C_2_13C_3_1C_3_2C_3_3C_3_4C_3_5C_3_6C_3_7C_3_8C_3_9C_3_10C_3_11C_3_12C_3_13C_4_1C_4_2C_4_3C_4_4C_4_5C_4_6C_4_7C_4_8C_4_9C_4_10C_4_11C_4_12C_4_13C_5_1C_5_2C_5_3C_5_4C_5_5C_5_6C_5_7C_5_8C_5_9C_5_10C_5_11C_5_12C_5_13C_6_1C_6_2C_6_3C_6_4C_6_5C_6_6C_6_7C_6_8C_6_9C_6_10C_6_11C_6_12C_6_13C_7_1C_7_2C_7_3C_7_4C_7_5C_7_6C_7_7C_7_8C_7_9C_7_10C_7_11C_7_12C_7_13C_8_1C_8_2C_8_3C_8_4C_8_5C_8_6C_8_7C_8_8C_8_9C_8_10C_8_11C_8_12C_8_13C_9_1C_9_2C_9_3C_9_4C_9_5C_9_6C_9_7C_9_8C_9_9C_9_10C_9_11C_9_12C_9_13C_10_1C_10_2C_10_3C_10_4C_10_5C_10_6C_10_7C_10_8C_10_9C_10_10C_10_11C_10_12C_10_13C_11_1C_11_2C_11_3C_11_4C_11_5C_11_6C_11_7C_11_8C_11_9C_11_10C_11_11C_11_12C_11_13C_12_1C_12_2C_12_3C_12_4C_12_5C_12_6C_12_7C_12_8C_12_9C_12_10C_12_11C_12_12C_12_13C_13_1C_13_2C_13_3C_13_4C_13_5C_13_6C_13_7C_13_8C_13_9C_13_10C_13_11C_13_12C_13_13C_14_1C_14_2C_14_3C_14_4C_14_5C_14_6C_14_7C_14_8C_14_9C_14_10C_14_11C_14_12C_14_13C_15_1C_15_2C_15_3C_15_4C_15_5C_15_6C_15_7C_15_8C_15_9C_15_10C_15_11C_15_12C_15_13C_16_1C_16_2C_16_3C_16_4C_16_5C_16_6C_16_7C_16_8C_16_9C_16_10C_16_11C_16_12C_16_13C_17_1C_17_2C_17_3C_17_4C_17_5C_17_6C_17_7C_17_8C_17_9C_17_10C_17_11C_17_12C_17_13C_18_1C_18_2C_18_3C_18_4C_18_5C_18_6C_18_7C_18_8C_18_9C_18_10C_18_11C_18_12C_18_13C_19_1C_19_2C_19_3C_19_4C_19_5C_19_6C_19_7C_19_8C_19_9C_19_10C_19_11C_19_12C_19_13C_20_1C_20_2C_20_3C_20_4C_20_5C_20_6C_20_7C_20_8C_20_9C_20_10C_20_11C_20_12C_20_13C_21_1C_21_2C_21_3C_21_4C_21_5C_21_6C_21_7C_21_8C_21_9C_21_10C_21_11C_21_12C_21_13C_22_1C_22_2C_22_3C_22_4C_22_5C_22_6C_22_7C_22_8C_22_9C_22_10C_22_11C_22_12C_22_13=TraceMulA_3_12A_3_13A_3_14A_3_15A_3_16A_3_17A_3_18A_3_19A_3_20A_3_21A_3_22A_5_1+A_4_12A_5_2+A_4_13A_5_3+A_4_14A_5_4+A_4_15A_5_5+A_4_16A_5_6+A_4_17A_5_7+A_4_18A_5_8+A_4_19A_5_9+A_4_20A_5_10+A_4_21A_5_11+A_4_22A_6_1+A_9_12A_6_2+A_9_13A_6_3+A_9_14A_6_4+A_9_15A_6_5+A_9_16A_6_6+A_9_17A_6_7+A_9_18A_6_8+A_9_19A_6_9+A_9_20A_6_10+A_9_21A_6_11+A_9_22A_7_1+A_10_12A_7_2+A_10_13A_7_3+A_10_14A_7_4+A_10_15A_7_5+A_10_16A_7_6+A_10_17A_7_7+A_10_18A_7_8+A_10_19A_7_9+A_10_20A_7_10+A_10_21A_7_11+A_10_22A_8_1+A_11_12A_8_2+A_11_13A_8_3+A_11_14A_8_4+A_11_15A_8_5+A_11_16A_8_6+A_11_17A_8_7+A_11_18A_8_8+A_11_19A_8_9+A_11_20A_8_10+A_11_21A_8_11+A_11_22A_1_1+A_12_12A_1_2+A_12_13A_1_3+A_12_14A_1_4+A_12_15A_1_5+A_12_16A_1_6+A_12_17A_1_7+A_12_18A_1_8+A_12_19A_1_9+A_12_20A_1_10+A_12_21A_1_11+A_12_22A_2_1+A_13_12A_2_2+A_13_13A_2_3+A_13_14A_2_4+A_13_15A_2_5+A_13_16A_2_6+A_13_17A_2_7+A_13_18A_2_8+A_13_19A_2_9+A_13_20A_2_10+A_13_21A_2_11+A_13_22B_1_1+B_12_12B_1_2+B_12_13B_1_3+B_12_14B_1_4+B_12_15B_1_5+B_12_16B_1_6+B_12_17B_1_7+B_12_18B_1_8+B_12_19B_1_9+B_12_20B_1_10+B_12_21B_1_11+B_12_22B_2_1+B_13_12B_2_2+B_13_13B_2_3+B_13_14B_2_4+B_13_15B_2_5+B_13_16B_2_6+B_13_17B_2_7+B_13_18B_2_8+B_13_19B_2_9+B_13_20B_2_10+B_13_21B_2_11+B_13_22B_3_1+B_14_12B_3_2+B_14_13B_3_3+B_14_14B_3_4+B_14_15B_3_5+B_14_16B_3_6+B_14_17B_3_7+B_14_18B_3_8+B_14_19B_3_9+B_14_20B_3_10+B_14_21B_3_11+B_14_22B_4_1+B_15_12B_4_2+B_15_13B_4_3+B_15_14B_4_4+B_15_15B_4_5+B_15_16B_4_6+B_15_17B_4_7+B_15_18B_4_8+B_15_19B_4_9+B_15_20B_4_10+B_15_21B_4_11+B_15_22B_5_1+B_16_12B_5_2+B_16_13B_5_3+B_16_14B_5_4+B_16_15B_5_5+B_16_16B_5_6+B_16_17B_5_7+B_16_18B_5_8+B_16_19B_5_9+B_16_20B_5_10+B_16_21B_5_11+B_16_22B_6_1+B_17_12B_6_2+B_17_13B_6_3+B_17_14B_6_4+B_17_15B_6_5+B_17_16B_6_6+B_17_17B_6_7+B_17_18B_6_8+B_17_19B_6_9+B_17_20B_6_10+B_17_21B_6_11+B_17_22B_7_1+B_18_12B_7_2+B_18_13B_7_3+B_18_14B_7_4+B_18_15B_7_5+B_18_16B_7_6+B_18_17B_7_7+B_18_18B_7_8+B_18_19B_7_9+B_18_20B_7_10+B_18_21B_7_11+B_18_22B_8_1+B_19_12B_8_2+B_19_13B_8_3+B_19_14B_8_4+B_19_15B_8_5+B_19_16B_8_6+B_19_17B_8_7+B_19_18B_8_8+B_19_19B_8_9+B_19_20B_8_10+B_19_21B_8_11+B_19_22B_9_1+B_20_12B_9_2+B_20_13B_9_3+B_20_14B_9_4+B_20_15B_9_5+B_20_16B_9_6+B_20_17B_9_7+B_20_18B_9_8+B_20_19B_9_9+B_20_20B_9_10+B_20_21B_9_11+B_20_22B_10_1+B_21_12B_10_2+B_21_13B_10_3+B_21_14B_10_4+B_21_15B_10_5+B_21_16B_10_6+B_21_17B_10_7+B_21_18B_10_8+B_21_19B_10_9+B_21_20B_10_10+B_21_21B_10_11+B_21_22B_11_1+B_22_12B_11_2+B_22_13B_11_3+B_22_14B_11_4+B_22_15B_11_5+B_22_16B_11_6+B_22_17B_11_7+B_22_18B_11_8+B_22_19B_11_9+B_22_20B_11_10+B_22_21B_11_11+B_22_22C_12_3C_1_5+C_12_4C_1_6+C_12_9C_1_7+C_12_10C_1_8+C_12_11C_1_1+C_12_12C_1_2+C_12_13C_13_3C_2_5+C_13_4C_2_6+C_13_9C_2_7+C_13_10C_2_8+C_13_11C_2_1+C_13_12C_2_2+C_13_13C_14_3C_3_5+C_14_4C_3_6+C_14_9C_3_7+C_14_10C_3_8+C_14_11C_3_1+C_14_12C_3_2+C_14_13C_15_3C_4_5+C_15_4C_4_6+C_15_9C_4_7+C_15_10C_4_8+C_15_11C_4_1+C_15_12C_4_2+C_15_13C_16_3C_5_5+C_16_4C_5_6+C_16_9C_5_7+C_16_10C_5_8+C_16_11C_5_1+C_16_12C_5_2+C_16_13C_17_3C_6_5+C_17_4C_6_6+C_17_9C_6_7+C_17_10C_6_8+C_17_11C_6_1+C_17_12C_6_2+C_17_13C_18_3C_7_5+C_18_4C_7_6+C_18_9C_7_7+C_18_10C_7_8+C_18_11C_7_1+C_18_12C_7_2+C_18_13C_19_3C_8_5+C_19_4C_8_6+C_19_9C_8_7+C_19_10C_8_8+C_19_11C_8_1+C_19_12C_8_2+C_19_13C_20_3C_9_5+C_20_4C_9_6+C_20_9C_9_7+C_20_10C_9_8+C_20_11C_9_1+C_20_12C_9_2+C_20_13C_21_3C_10_5+C_21_4C_10_6+C_21_9C_10_7+C_21_10C_10_8+C_21_11C_10_1+C_21_12C_10_2+C_21_13C_22_3C_11_5+C_22_4C_11_6+C_22_9C_11_7+C_22_10C_11_8+C_22_11C_11_1+C_22_12C_11_2+C_22_13+TraceMulA_5_12-A_4_12A_5_13-A_4_13A_5_14-A_4_14A_5_15-A_4_15A_5_16-A_4_16A_5_17-A_4_17A_5_18-A_4_18A_5_19-A_4_19A_5_20-A_4_20A_5_21-A_4_21A_5_22-A_4_22A_6_12-A_9_12A_6_13-A_9_13A_6_14-A_9_14A_6_15-A_9_15A_6_16-A_9_16A_6_17-A_9_17A_6_18-A_9_18A_6_19-A_9_19A_6_20-A_9_20A_6_21-A_9_21A_6_22-A_9_22A_7_12-A_10_12A_7_13-A_10_13A_7_14-A_10_14A_7_15-A_10_15A_7_16-A_10_16A_7_17-A_10_17A_7_18-A_10_18A_7_19-A_10_19A_7_20-A_10_20A_7_21-A_10_21A_7_22-A_10_22A_8_12-A_11_12A_8_13-A_11_13A_8_14-A_11_14A_8_15-A_11_15A_8_16-A_11_16A_8_17-A_11_17A_8_18-A_11_18A_8_19-A_11_19A_8_20-A_11_20A_8_21-A_11_21A_8_22-A_11_22A_1_12-A_12_12A_1_13-A_12_13A_1_14-A_12_14A_1_15-A_12_15A_1_16-A_12_16A_1_17-A_12_17A_1_18-A_12_18A_1_19-A_12_19A_1_20-A_12_20A_1_21-A_12_21A_1_22-A_12_22A_2_12-A_13_12A_2_13-A_13_13A_2_14-A_13_14A_2_15-A_13_15A_2_16-A_13_16A_2_17-A_13_17A_2_18-A_13_18A_2_19-A_13_19A_2_20-A_13_20A_2_21-A_13_21A_2_22-A_13_22B_12_1+B_12_12B_12_2+B_12_13B_12_3+B_12_14B_12_4+B_12_15B_12_5+B_12_16B_12_6+B_12_17B_12_7+B_12_18B_12_8+B_12_19B_12_9+B_12_20B_12_10+B_12_21B_12_11+B_12_22B_13_1+B_13_12B_13_2+B_13_13B_13_3+B_13_14B_13_4+B_13_15B_13_5+B_13_16B_13_6+B_13_17B_13_7+B_13_18B_13_8+B_13_19B_13_9+B_13_20B_13_10+B_13_21B_13_11+B_13_22B_14_1+B_14_12B_14_2+B_14_13B_14_3+B_14_14B_14_4+B_14_15B_14_5+B_14_16B_14_6+B_14_17B_14_7+B_14_18B_14_8+B_14_19B_14_9+B_14_20B_14_10+B_14_21B_14_11+B_14_22B_15_1+B_15_12B_15_2+B_15_13B_15_3+B_15_14B_15_4+B_15_15B_15_5+B_15_16B_15_6+B_15_17B_15_7+B_15_18B_15_8+B_15_19B_15_9+B_15_20B_15_10+B_15_21B_15_11+B_15_22B_16_1+B_16_12B_16_2+B_16_13B_16_3+B_16_14B_16_4+B_16_15B_16_5+B_16_16B_16_6+B_16_17B_16_7+B_16_18B_16_8+B_16_19B_16_9+B_16_20B_16_10+B_16_21B_16_11+B_16_22B_17_1+B_17_12B_17_2+B_17_13B_17_3+B_17_14B_17_4+B_17_15B_17_5+B_17_16B_17_6+B_17_17B_17_7+B_17_18B_17_8+B_17_19B_17_9+B_17_20B_17_10+B_17_21B_17_11+B_17_22B_18_1+B_18_12B_18_2+B_18_13B_18_3+B_18_14B_18_4+B_18_15B_18_5+B_18_16B_18_6+B_18_17B_18_7+B_18_18B_18_8+B_18_19B_18_9+B_18_20B_18_10+B_18_21B_18_11+B_18_22B_19_1+B_19_12B_19_2+B_19_13B_19_3+B_19_14B_19_4+B_19_15B_19_5+B_19_16B_19_6+B_19_17B_19_7+B_19_18B_19_8+B_19_19B_19_9+B_19_20B_19_10+B_19_21B_19_11+B_19_22B_20_1+B_20_12B_20_2+B_20_13B_20_3+B_20_14B_20_4+B_20_15B_20_5+B_20_16B_20_6+B_20_17B_20_7+B_20_18B_20_8+B_20_19B_20_9+B_20_20B_20_10+B_20_21B_20_11+B_20_22B_21_1+B_21_12B_21_2+B_21_13B_21_3+B_21_14B_21_4+B_21_15B_21_5+B_21_16B_21_6+B_21_17B_21_7+B_21_18B_21_8+B_21_19B_21_9+B_21_20B_21_10+B_21_21B_21_11+B_21_22B_22_1+B_22_12B_22_2+B_22_13B_22_3+B_22_14B_22_4+B_22_15B_22_5+B_22_16B_22_6+B_22_17B_22_7+B_22_18B_22_8+B_22_19B_22_9+B_22_20B_22_10+B_22_21B_22_11+B_22_22C_1_5C_1_6C_1_7C_1_8C_1_1C_1_2C_2_5C_2_6C_2_7C_2_8C_2_1C_2_2C_3_5C_3_6C_3_7C_3_8C_3_1C_3_2C_4_5C_4_6C_4_7C_4_8C_4_1C_4_2C_5_5C_5_6C_5_7C_5_8C_5_1C_5_2C_6_5C_6_6C_6_7C_6_8C_6_1C_6_2C_7_5C_7_6C_7_7C_7_8C_7_1C_7_2C_8_5C_8_6C_8_7C_8_8C_8_1C_8_2C_9_5C_9_6C_9_7C_9_8C_9_1C_9_2C_10_5C_10_6C_10_7C_10_8C_10_1C_10_2C_11_5C_11_6C_11_7C_11_8C_11_1C_11_2+TraceMulA_3_1A_3_2A_3_3A_3_4A_3_5A_3_6A_3_7A_3_8A_3_9A_3_10A_3_11-A_5_1+A_4_1-A_5_2+A_4_2A_4_3-A_5_3A_4_4-A_5_4A_4_5-A_5_5A_4_6-A_5_6A_4_7-A_5_7A_4_8-A_5_8A_4_9-A_5_9A_4_10-A_5_10A_4_11-A_5_11-A_6_1+A_9_1-A_6_2+A_9_2-A_6_3+A_9_3-A_6_4+A_9_4-A_6_5+A_9_5-A_6_6+A_9_6-A_6_7+A_9_7-A_6_8+A_9_8-A_6_9+A_9_9-A_6_10+A_9_10-A_6_11+A_9_11-A_7_1+A_10_1-A_7_2+A_10_2-A_7_3+A_10_3-A_7_4+A_10_4-A_7_5+A_10_5-A_7_6+A_10_6-A_7_7+A_10_7-A_7_8+A_10_8-A_7_9+A_10_9-A_7_10+A_10_10-A_7_11+A_10_11-A_8_1+A_11_1-A_8_2+A_11_2-A_8_3+A_11_3-A_8_4+A_11_4-A_8_5+A_11_5-A_8_6+A_11_6-A_8_7+A_11_7-A_8_8+A_11_8-A_8_9+A_11_9-A_8_10+A_11_10-A_8_11+A_11_11-A_1_1+A_12_1-A_1_2+A_12_2-A_1_3+A_12_3-A_1_4+A_12_4-A_1_5+A_12_5-A_1_6+A_12_6-A_1_7+A_12_7-A_1_8+A_12_8-A_1_9+A_12_9-A_1_10+A_12_10-A_1_11+A_12_11-A_2_1+A_13_1-A_2_2+A_13_2-A_2_3+A_13_3-A_2_4+A_13_4-A_2_5+A_13_5-A_2_6+A_13_6-A_2_7+A_13_7-A_2_8+A_13_8-A_2_9+A_13_9-A_2_10+A_13_10-A_2_11+A_13_11B_1_1+B_1_12B_1_2+B_1_13B_1_3+B_1_14B_1_4+B_1_15B_1_5+B_1_16B_1_6+B_1_17B_1_7+B_1_18B_1_8+B_1_19B_1_9+B_1_20B_1_10+B_1_21B_1_11+B_1_22B_2_1+B_2_12B_2_2+B_2_13B_2_3+B_2_14B_2_4+B_2_15B_2_5+B_2_16B_2_6+B_2_17B_2_7+B_2_18B_2_8+B_2_19B_2_9+B_2_20B_2_10+B_2_21B_2_11+B_2_22B_3_1+B_3_12B_3_2+B_3_13B_3_3+B_3_14B_3_4+B_3_15B_3_5+B_3_16B_3_6+B_3_17B_3_7+B_3_18B_3_8+B_3_19B_3_9+B_3_20B_3_10+B_3_21B_3_11+B_3_22B_4_1+B_4_12B_4_2+B_4_13B_4_3+B_4_14B_4_4+B_4_15B_4_5+B_4_16B_4_6+B_4_17B_4_7+B_4_18B_4_8+B_4_19B_4_9+B_4_20B_4_10+B_4_21B_4_11+B_4_22B_5_1+B_5_12B_5_2+B_5_13B_5_3+B_5_14B_5_4+B_5_15B_5_5+B_5_16B_5_6+B_5_17B_5_7+B_5_18B_5_8+B_5_19B_5_9+B_5_20B_5_10+B_5_21B_5_11+B_5_22B_6_1+B_6_12B_6_2+B_6_13B_6_3+B_6_14B_6_4+B_6_15B_6_5+B_6_16B_6_6+B_6_17B_6_7+B_6_18B_6_8+B_6_19B_6_9+B_6_20B_6_10+B_6_21B_6_11+B_6_22B_7_1+B_7_12B_7_2+B_7_13B_7_3+B_7_14B_7_4+B_7_15B_7_5+B_7_16B_7_6+B_7_17B_7_7+B_7_18B_7_8+B_7_19B_7_9+B_7_20B_7_10+B_7_21B_7_11+B_7_22B_8_1+B_8_12B_8_2+B_8_13B_8_3+B_8_14B_8_4+B_8_15B_8_5+B_8_16B_8_6+B_8_17B_8_7+B_8_18B_8_8+B_8_19B_8_9+B_8_20B_8_10+B_8_21B_8_11+B_8_22B_9_1+B_9_12B_9_2+B_9_13B_9_3+B_9_14B_9_4+B_9_15B_9_5+B_9_16B_9_6+B_9_17B_9_7+B_9_18B_9_8+B_9_19B_9_9+B_9_20B_9_10+B_9_21B_9_11+B_9_22B_10_1+B_10_12B_10_2+B_10_13B_10_3+B_10_14B_10_4+B_10_15B_10_5+B_10_16B_10_6+B_10_17B_10_7+B_10_18B_10_8+B_10_19B_10_9+B_10_20B_10_10+B_10_21B_10_11+B_10_22B_11_1+B_11_12B_11_2+B_11_13B_11_3+B_11_14B_11_4+B_11_15B_11_5+B_11_16B_11_6+B_11_17B_11_7+B_11_18B_11_8+B_11_19B_11_9+B_11_20B_11_10+B_11_21B_11_11+B_11_22C_12_3C_12_4C_12_9C_12_10C_12_11C_12_12C_12_13C_13_3C_13_4C_13_9C_13_10C_13_11C_13_12C_13_13C_14_3C_14_4C_14_9C_14_10C_14_11C_14_12C_14_13C_15_3C_15_4C_15_9C_15_10C_15_11C_15_12C_15_13C_16_3C_16_4C_16_9C_16_10C_16_11C_16_12C_16_13C_17_3C_17_4C_17_9C_17_10C_17_11C_17_12C_17_13C_18_3C_18_4C_18_9C_18_10C_18_11C_18_12C_18_13C_19_3C_19_4C_19_9C_19_10C_19_11C_19_12C_19_13C_20_3C_20_4C_20_9C_20_10C_20_11C_20_12C_20_13C_21_3C_21_4C_21_9C_21_10C_21_11C_21_12C_21_13C_22_3C_22_4C_22_9C_22_10C_22_11C_22_12C_22_13+TraceMulA_5_1+A_5_12A_5_2+A_5_13A_5_3+A_5_14A_5_4+A_5_15A_5_5+A_5_16A_5_6+A_5_17A_5_7+A_5_18A_5_8+A_5_19A_5_9+A_5_20A_5_10+A_5_21A_5_11+A_5_22A_6_1+A_6_12A_6_2+A_6_13A_6_3+A_6_14A_6_4+A_6_15A_6_5+A_6_16A_6_6+A_6_17A_6_7+A_6_18A_6_8+A_6_19A_6_9+A_6_20A_6_10+A_6_21A_6_11+A_6_22A_7_1+A_7_12A_7_2+A_7_13A_7_3+A_7_14A_7_4+A_7_15A_7_5+A_7_16A_7_6+A_7_17A_7_7+A_7_18A_7_8+A_7_19A_7_9+A_7_20A_7_10+A_7_21A_7_11+A_7_22A_8_1+A_8_12A_8_2+A_8_13A_8_3+A_8_14A_8_4+A_8_15A_8_5+A_8_16A_8_6+A_8_17A_8_7+A_8_18A_8_8+A_8_19A_8_9+A_8_20A_8_10+A_8_21A_8_11+A_8_22A_1_1+A_1_12A_1_2+A_1_13A_1_3+A_1_14A_1_4+A_1_15A_1_5+A_1_16A_1_6+A_1_17A_1_7+A_1_18A_1_8+A_1_19A_1_9+A_1_20A_1_10+A_1_21A_1_11+A_1_22A_2_1+A_2_12A_2_2+A_2_13A_2_3+A_2_14A_2_4+A_2_15A_2_5+A_2_16A_2_6+A_2_17A_2_7+A_2_18A_2_8+A_2_19A_2_9+A_2_20A_2_10+A_2_21A_2_11+A_2_22B_12_12B_12_13B_12_14B_12_15B_12_16B_12_17B_12_18B_12_19B_12_20B_12_21B_12_22B_13_12B_13_13B_13_14B_13_15B_13_16B_13_17B_13_18B_13_19B_13_20B_13_21B_13_22B_14_12B_14_13B_14_14B_14_15B_14_16B_14_17B_14_18B_14_19B_14_20B_14_21B_14_22B_15_12B_15_13B_15_14B_15_15B_15_16B_15_17B_15_18B_15_19B_15_20B_15_21B_15_22B_16_12B_16_13B_16_14B_16_15B_16_16B_16_17B_16_18B_16_19B_16_20B_16_21B_16_22B_17_12B_17_13B_17_14B_17_15B_17_16B_17_17B_17_18B_17_19B_17_20B_17_21B_17_22B_18_12B_18_13B_18_14B_18_15B_18_16B_18_17B_18_18B_18_19B_18_20B_18_21B_18_22B_19_12B_19_13B_19_14B_19_15B_19_16B_19_17B_19_18B_19_19B_19_20B_19_21B_19_22B_20_12B_20_13B_20_14B_20_15B_20_16B_20_17B_20_18B_20_19B_20_20B_20_21B_20_22B_21_12B_21_13B_21_14B_21_15B_21_16B_21_17B_21_18B_21_19B_21_20B_21_21B_21_22B_22_12B_22_13B_22_14B_22_15B_22_16B_22_17B_22_18B_22_19B_22_20B_22_21B_22_22-C_1_5+C_12_5-C_1_6+C_12_6-C_1_7+C_12_7-C_1_8+C_12_8-C_1_1+C_12_1-C_1_2+C_12_2-C_2_5+C_13_5-C_2_6+C_13_6-C_2_7+C_13_7-C_2_8+C_13_8-C_2_1+C_13_1-C_2_2+C_13_2-C_3_5+C_14_5-C_3_6+C_14_6-C_3_7+C_14_7-C_3_8+C_14_8-C_3_1+C_14_1-C_3_2+C_14_2-C_4_5+C_15_5-C_4_6+C_15_6-C_4_7+C_15_7-C_4_8+C_15_8-C_4_1+C_15_1-C_4_2+C_15_2-C_5_5+C_16_5-C_5_6+C_16_6-C_5_7+C_16_7-C_5_8+C_16_8-C_5_1+C_16_1-C_5_2+C_16_2-C_6_5+C_17_5-C_6_6+C_17_6-C_6_7+C_17_7-C_6_8+C_17_8-C_6_1+C_17_1-C_6_2+C_17_2-C_7_5+C_18_5-C_7_6+C_18_6-C_7_7+C_18_7-C_7_8+C_18_8-C_7_1+C_18_1-C_7_2+C_18_2-C_8_5+C_19_5-C_8_6+C_19_6-C_8_7+C_19_7-C_8_8+C_19_8-C_8_1+C_19_1-C_8_2+C_19_2-C_9_5+C_20_5-C_9_6+C_20_6-C_9_7+C_20_7-C_9_8+C_20_8-C_9_1+C_20_1-C_9_2+C_20_2-C_10_5+C_21_5-C_10_6+C_21_6-C_10_7+C_21_7-C_10_8+C_21_8-C_10_1+C_21_1-C_10_2+C_21_2-C_11_5+C_22_5-C_11_6+C_22_6-C_11_7+C_22_7-C_11_8+C_22_8-C_11_1+C_22_1-C_11_2+C_22_2+TraceMulA_5_1A_5_2A_5_3A_5_4A_5_5A_5_6A_5_7A_5_8A_5_9A_5_10A_5_11A_6_1A_6_2A_6_3A_6_4A_6_5A_6_6A_6_7A_6_8A_6_9A_6_10A_6_11A_7_1A_7_2A_7_3A_7_4A_7_5A_7_6A_7_7A_7_8A_7_9A_7_10A_7_11A_8_1A_8_2A_8_3A_8_4A_8_5A_8_6A_8_7A_8_8A_8_9A_8_10A_8_11A_1_1A_1_2A_1_3A_1_4A_1_5A_1_6A_1_7A_1_8A_1_9A_1_10A_1_11A_2_1A_2_2A_2_3A_2_4A_2_5A_2_6A_2_7A_2_8A_2_9A_2_10A_2_11B_1_12-B_12_12B_1_13-B_12_13B_1_14-B_12_14B_1_15-B_12_15B_1_16-B_12_16B_1_17-B_12_17B_1_18-B_12_18B_1_19-B_12_19B_1_20-B_12_20B_1_21-B_12_21B_1_22-B_12_22B_2_12-B_13_12B_2_13-B_13_13B_2_14-B_13_14B_2_15-B_13_15B_2_16-B_13_16B_2_17-B_13_17B_2_18-B_13_18B_2_19-B_13_19B_2_20-B_13_20B_2_21-B_13_21B_2_22-B_13_22B_3_12-B_14_12B_3_13-B_14_13B_3_14-B_14_14B_3_15-B_14_15B_3_16-B_14_16B_3_17-B_14_17B_3_18-B_14_18B_3_19-B_14_19B_3_20-B_14_20B_3_21-B_14_21B_3_22-B_14_22B_4_12-B_15_12B_4_13-B_15_13B_4_14-B_15_14B_4_15-B_15_15B_4_16-B_15_16B_4_17-B_15_17B_4_18-B_15_18B_4_19-B_15_19B_4_20-B_15_20B_4_21-B_15_21B_4_22-B_15_22B_5_12-B_16_12B_5_13-B_16_13B_5_14-B_16_14B_5_15-B_16_15B_5_16-B_16_16B_5_17-B_16_17B_5_18-B_16_18B_5_19-B_16_19B_5_20-B_16_20B_5_21-B_16_21B_5_22-B_16_22B_6_12-B_17_12B_6_13-B_17_13B_6_14-B_17_14B_6_15-B_17_15B_6_16-B_17_16B_6_17-B_17_17B_6_18-B_17_18B_6_19-B_17_19B_6_20-B_17_20B_6_21-B_17_21B_6_22-B_17_22B_7_12-B_18_12B_7_13-B_18_13B_7_14-B_18_14B_7_15-B_18_15B_7_16-B_18_16B_7_17-B_18_17B_7_18-B_18_18B_7_19-B_18_19B_7_20-B_18_20B_7_21-B_18_21B_7_22-B_18_22B_8_12-B_19_12B_8_13-B_19_13B_8_14-B_19_14B_8_15-B_19_15B_8_16-B_19_16B_8_17-B_19_17B_8_18-B_19_18B_8_19-B_19_19B_8_20-B_19_20B_8_21-B_19_21B_8_22-B_19_22B_9_12-B_20_12B_9_13-B_20_13B_9_14-B_20_14B_9_15-B_20_15B_9_16-B_20_16B_9_17-B_20_17B_9_18-B_20_18B_9_19-B_20_19B_9_20-B_20_20B_9_21-B_20_21B_9_22-B_20_22B_10_12-B_21_12B_10_13-B_21_13B_10_14-B_21_14B_10_15-B_21_15B_10_16-B_21_16B_10_17-B_21_17B_10_18-B_21_18B_10_19-B_21_19B_10_20-B_21_20B_10_21-B_21_21B_10_22-B_21_22B_11_12-B_22_12B_11_13-B_22_13B_11_14-B_22_14B_11_15-B_22_15B_11_16-B_22_16B_11_17-B_22_17B_11_18-B_22_18B_11_19-B_22_19B_11_20-B_22_20B_11_21-B_22_21B_11_22-B_22_22C_12_4+C_12_5C_12_6+C_12_9C_12_7+C_12_10C_12_8+C_12_11C_12_1+C_12_12C_12_2+C_12_13C_13_4+C_13_5C_13_6+C_13_9C_13_7+C_13_10C_13_8+C_13_11C_13_1+C_13_12C_13_2+C_13_13C_14_4+C_14_5C_14_6+C_14_9C_14_7+C_14_10C_14_8+C_14_11C_14_1+C_14_12C_14_2+C_14_13C_15_4+C_15_5C_15_6+C_15_9C_15_7+C_15_10C_15_8+C_15_11C_15_1+C_15_12C_15_2+C_15_13C_16_4+C_16_5C_16_6+C_16_9C_16_7+C_16_10C_16_8+C_16_11C_16_1+C_16_12C_16_2+C_16_13C_17_4+C_17_5C_17_6+C_17_9C_17_7+C_17_10C_17_8+C_17_11C_17_1+C_17_12C_17_2+C_17_13C_18_4+C_18_5C_18_6+C_18_9C_18_7+C_18_10C_18_8+C_18_11C_18_1+C_18_12C_18_2+C_18_13C_19_4+C_19_5C_19_6+C_19_9C_19_7+C_19_10C_19_8+C_19_11C_19_1+C_19_12C_19_2+C_19_13C_20_4+C_20_5C_20_6+C_20_9C_20_7+C_20_10C_20_8+C_20_11C_20_1+C_20_12C_20_2+C_20_13C_21_5+C_21_4C_21_6+C_21_9C_21_7+C_21_10C_21_8+C_21_11C_21_1+C_21_12C_21_2+C_21_13C_22_5+C_22_4C_22_6+C_22_9C_22_7+C_22_10C_22_8+C_22_11C_22_1+C_22_12C_22_2+C_22_13+TraceMulA_3_12A_3_13A_3_14A_3_15A_3_16A_3_17A_3_18A_3_19A_3_20A_3_21A_3_22A_4_12A_4_13A_4_14A_4_15A_4_16A_4_17A_4_18A_4_19A_4_20A_4_21A_4_22A_9_12A_9_13A_9_14A_9_15A_9_16A_9_17A_9_18A_9_19A_9_20A_9_21A_9_22A_10_12A_10_13A_10_14A_10_15A_10_16A_10_17A_10_18A_10_19A_10_20A_10_21A_10_22A_11_12A_11_13A_11_14A_11_15A_11_16A_11_17A_11_18A_11_19A_11_20A_11_21A_11_22A_12_12A_12_13A_12_14A_12_15A_12_16A_12_17A_12_18A_12_19A_12_20A_12_21A_12_22A_13_12A_13_13A_13_14A_13_15A_13_16A_13_17A_13_18A_13_19A_13_20A_13_21A_13_22-B_1_1+B_12_1-B_1_2+B_12_2-B_1_3+B_12_3-B_1_4+B_12_4-B_1_5+B_12_5-B_1_6+B_12_6-B_1_7+B_12_7-B_1_8+B_12_8-B_1_9+B_12_9-B_1_10+B_12_10-B_1_11+B_12_11-B_2_1+B_13_1-B_2_2+B_13_2-B_2_3+B_13_3-B_2_4+B_13_4-B_2_5+B_13_5-B_2_6+B_13_6-B_2_7+B_13_7-B_2_8+B_13_8-B_2_9+B_13_9-B_2_10+B_13_10-B_2_11+B_13_11-B_3_1+B_14_1-B_3_2+B_14_2-B_3_3+B_14_3-B_3_4+B_14_4-B_3_5+B_14_5-B_3_6+B_14_6-B_3_7+B_14_7-B_3_8+B_14_8-B_3_9+B_14_9-B_3_10+B_14_10-B_3_11+B_14_11-B_4_1+B_15_1-B_4_2+B_15_2-B_4_3+B_15_3-B_4_4+B_15_4-B_4_5+B_15_5-B_4_6+B_15_6-B_4_7+B_15_7-B_4_8+B_15_8-B_4_9+B_15_9-B_4_10+B_15_10-B_4_11+B_15_11-B_5_1+B_16_1-B_5_2+B_16_2-B_5_3+B_16_3-B_5_4+B_16_4-B_5_5+B_16_5-B_5_6+B_16_6-B_5_7+B_16_7-B_5_8+B_16_8-B_5_9+B_16_9-B_5_10+B_16_10-B_5_11+B_16_11-B_6_1+B_17_1-B_6_2+B_17_2-B_6_3+B_17_3-B_6_4+B_17_4-B_6_5+B_17_5-B_6_6+B_17_6-B_6_7+B_17_7-B_6_8+B_17_8-B_6_9+B_17_9-B_6_10+B_17_10-B_6_11+B_17_11-B_7_1+B_18_1-B_7_2+B_18_2-B_7_3+B_18_3-B_7_4+B_18_4-B_7_5+B_18_5-B_7_6+B_18_6-B_7_7+B_18_7-B_7_8+B_18_8-B_7_9+B_18_9-B_7_10+B_18_10-B_7_11+B_18_11-B_8_1+B_19_1-B_8_2+B_19_2-B_8_3+B_19_3-B_8_4+B_19_4-B_8_5+B_19_5-B_8_6+B_19_6-B_8_7+B_19_7-B_8_8+B_19_8-B_8_9+B_19_9-B_8_10+B_19_10-B_8_11+B_19_11-B_9_1+B_20_1-B_9_2+B_20_2-B_9_3+B_20_3-B_9_4+B_20_4-B_9_5+B_20_5-B_9_6+B_20_6-B_9_7+B_20_7-B_9_8+B_20_8-B_9_9+B_20_9-B_9_10+B_20_10-B_9_11+B_20_11-B_10_1+B_21_1-B_10_2+B_21_2-B_10_3+B_21_3-B_10_4+B_21_4-B_10_5+B_21_5-B_10_6+B_21_6-B_10_7+B_21_7-B_10_8+B_21_8-B_10_9+B_21_9-B_10_10+B_21_10-B_10_11+B_21_11-B_11_1+B_22_1-B_11_2+B_22_2-B_11_3+B_22_3-B_11_4+B_22_4-B_11_5+B_22_5-B_11_6+B_22_6-B_11_7+B_22_7-B_11_8+B_22_8-B_11_9+B_22_9-B_11_10+B_22_10-B_11_11+B_22_11C_1_3C_1_4+C_1_5C_1_6+C_1_9C_1_7+C_1_10C_1_8+C_1_11C_1_1+C_1_12C_1_2+C_1_13C_2_3C_2_4+C_2_5C_2_6+C_2_9C_2_7+C_2_10C_2_8+C_2_11C_2_1+C_2_12C_2_2+C_2_13C_3_3C_3_4+C_3_5C_3_6+C_3_9C_3_7+C_3_10C_3_8+C_3_11C_3_1+C_3_12C_3_2+C_3_13C_4_3C_4_4+C_4_5C_4_6+C_4_9C_4_7+C_4_10C_4_8+C_4_11C_4_1+C_4_12C_4_2+C_4_13C_5_3C_5_4+C_5_5C_5_6+C_5_9C_5_7+C_5_10C_5_8+C_5_11C_5_1+C_5_12C_5_2+C_5_13C_6_3C_6_4+C_6_5C_6_6+C_6_9C_6_7+C_6_10C_6_8+C_6_11C_6_1+C_6_12C_6_2+C_6_13C_7_3C_7_4+C_7_5C_7_6+C_7_9C_7_7+C_7_10C_7_8+C_7_11C_7_1+C_7_12C_7_2+C_7_13C_8_3C_8_4+C_8_5C_8_6+C_8_9C_8_7+C_8_10C_8_8+C_8_11C_8_1+C_8_12C_8_2+C_8_13C_9_3C_9_4+C_9_5C_9_6+C_9_9C_9_7+C_9_10C_9_8+C_9_11C_9_1+C_9_12C_9_2+C_9_13C_10_3C_10_4+C_10_5C_10_6+C_10_9C_10_7+C_10_10C_10_8+C_10_11C_10_1+C_10_12C_10_2+C_10_13C_11_3C_11_4+C_11_5C_11_6+C_11_9C_11_7+C_11_10C_11_8+C_11_11C_11_1+C_11_12C_11_2+C_11_13+TraceMulA_3_1+A_3_12A_3_2+A_3_13A_3_3+A_3_14A_3_4+A_3_15A_3_5+A_3_16A_3_6+A_3_17A_3_7+A_3_18A_3_8+A_3_19A_3_9+A_3_20A_3_10+A_3_21A_3_11+A_3_22A_4_1+A_4_12A_4_2+A_4_13A_4_3+A_4_14A_4_4+A_4_15A_4_5+A_4_16A_4_6+A_4_17A_4_7+A_4_18A_4_8+A_4_19A_4_9+A_4_20A_4_10+A_4_21A_4_11+A_4_22A_9_1+A_9_12A_9_2+A_9_13A_9_3+A_9_14A_9_4+A_9_15A_9_5+A_9_16A_9_6+A_9_17A_9_7+A_9_18A_9_8+A_9_19A_9_9+A_9_20A_9_10+A_9_21A_9_11+A_9_22A_10_1+A_10_12A_10_2+A_10_13A_10_3+A_10_14A_10_4+A_10_15A_10_5+A_10_16A_10_6+A_10_17A_10_7+A_10_18A_10_8+A_10_19A_10_9+A_10_20A_10_10+A_10_21A_10_11+A_10_22A_11_1+A_11_12A_11_2+A_11_13A_11_3+A_11_14A_11_4+A_11_15A_11_5+A_11_16A_11_6+A_11_17A_11_7+A_11_18A_11_8+A_11_19A_11_9+A_11_20A_11_10+A_11_21A_11_11+A_11_22A_12_1+A_12_12A_12_2+A_12_13A_12_3+A_12_14A_12_4+A_12_15A_12_5+A_12_16A_12_6+A_12_17A_12_7+A_12_18A_12_8+A_12_19A_12_9+A_12_20A_12_10+A_12_21A_12_11+A_12_22A_13_1+A_13_12A_13_2+A_13_13A_13_3+A_13_14A_13_4+A_13_15A_13_5+A_13_16A_13_6+A_13_17A_13_7+A_13_18A_13_8+A_13_19A_13_9+A_13_20A_13_10+A_13_21A_13_11+A_13_22B_1_1B_1_2B_1_3B_1_4B_1_5B_1_6B_1_7B_1_8B_1_9B_1_10B_1_11B_2_1B_2_2B_2_3B_2_4B_2_5B_2_6B_2_7B_2_8B_2_9B_2_10B_2_11B_3_1B_3_2B_3_3B_3_4B_3_5B_3_6B_3_7B_3_8B_3_9B_3_10B_3_11B_4_1B_4_2B_4_3B_4_4B_4_5B_4_6B_4_7B_4_8B_4_9B_4_10B_4_11B_5_1B_5_2B_5_3B_5_4B_5_5B_5_6B_5_7B_5_8B_5_9B_5_10B_5_11B_6_1B_6_2B_6_3B_6_4B_6_5B_6_6B_6_7B_6_8B_6_9B_6_10B_6_11B_7_1B_7_2B_7_3B_7_4B_7_5B_7_6B_7_7B_7_8B_7_9B_7_10B_7_11B_8_1B_8_2B_8_3B_8_4B_8_5B_8_6B_8_7B_8_8B_8_9B_8_10B_8_11B_9_1B_9_2B_9_3B_9_4B_9_5B_9_6B_9_7B_9_8B_9_9B_9_10B_9_11B_10_1B_10_2B_10_3B_10_4B_10_5B_10_6B_10_7B_10_8B_10_9B_10_10B_10_11B_11_1B_11_2B_11_3B_11_4B_11_5B_11_6B_11_7B_11_8B_11_9B_11_10B_11_11C_1_3-C_12_3C_1_4-C_12_4C_1_9-C_12_9C_1_10-C_12_10C_1_11-C_12_11C_1_12-C_12_12C_1_13-C_12_13C_2_3-C_13_3C_2_4-C_13_4C_2_9-C_13_9C_2_10-C_13_10C_2_11-C_13_11C_2_12-C_13_12C_2_13-C_13_13C_3_3-C_14_3C_3_4-C_14_4C_3_9-C_14_9C_3_10-C_14_10C_3_11-C_14_11C_3_12-C_14_12C_3_13-C_14_13C_4_3-C_15_3C_4_4-C_15_4C_4_9-C_15_9C_4_10-C_15_10C_4_11-C_15_11C_4_12-C_15_12C_4_13-C_15_13C_5_3-C_16_3C_5_4-C_16_4C_5_9-C_16_9C_5_10-C_16_10C_5_11-C_16_11C_5_12-C_16_12C_5_13-C_16_13C_6_3-C_17_3C_6_4-C_17_4C_6_9-C_17_9C_6_10-C_17_10C_6_11-C_17_11C_6_12-C_17_12C_6_13-C_17_13C_7_3-C_18_3C_7_4-C_18_4C_7_9-C_18_9C_7_10-C_18_10C_7_11-C_18_11C_7_12-C_18_12C_7_13-C_18_13C_8_3-C_19_3C_8_4-C_19_4C_8_9-C_19_9C_8_10-C_19_10C_8_11-C_19_11C_8_12-C_19_12C_8_13-C_19_13C_9_3-C_20_3C_9_4-C_20_4C_9_9-C_20_9C_9_10-C_20_10C_9_11-C_20_11C_9_12-C_20_12C_9_13-C_20_13C_10_3-C_21_3C_10_4-C_21_4C_10_9-C_21_9C_10_10-C_21_10C_10_11-C_21_11C_10_12-C_21_12C_10_13-C_21_13C_11_3-C_22_3C_11_4-C_22_4C_11_9-C_22_9C_11_10-C_22_10C_11_11-C_22_11C_11_12-C_22_12C_11_13-C_22_13

N.B.: for any matrices A, B and C such that the expression Tr(Mul(A,B,C)) is defined, one can construct several trilinear homogeneous polynomials P(A,B,C) such that P(A,B,C)=Tr(Mul(A,B,C)) (P(A,B,C) variables are A,B and C's coefficients). Each trilinear P expression encodes a matrix multiplication algorithm: the coefficient in C_i_j of P(A,B,C) is the (i,j)-th entry of the matrix product Mul(A,B)=Transpose(C).

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table