Description of fast matrix multiplication algorithm: ⟨12×30×30:6080⟩

Algorithm type

32X4Y9Z6+48X2Y9Z6+128X2Y3Z12+736X4Y6Z6+192XY3Z12+128X8Y3Z3+416X2Y9Z3+1360X2Y6Z6+624XY9Z3+384XY6Z6+128X2Y6Z3+128X2Y3Z6+192X4Y3Z3+192XY6Z3+192XY3Z6+480X2Y3Z3+720XY3Z332X4Y9Z648X2Y9Z6128X2Y3Z12736X4Y6Z6192XY3Z12128X8Y3Z3416X2Y9Z31360X2Y6Z6624XY9Z3384XY6Z6128X2Y6Z3128X2Y3Z6192X4Y3Z3192XY6Z3192XY3Z6480X2Y3Z3720XY3Z332*X^4*Y^9*Z^6+48*X^2*Y^9*Z^6+128*X^2*Y^3*Z^12+736*X^4*Y^6*Z^6+192*X*Y^3*Z^12+128*X^8*Y^3*Z^3+416*X^2*Y^9*Z^3+1360*X^2*Y^6*Z^6+624*X*Y^9*Z^3+384*X*Y^6*Z^6+128*X^2*Y^6*Z^3+128*X^2*Y^3*Z^6+192*X^4*Y^3*Z^3+192*X*Y^6*Z^3+192*X*Y^3*Z^6+480*X^2*Y^3*Z^3+720*X*Y^3*Z^3

Algorithm definition

The algorithm ⟨12×30×30:6080⟩ is the (Kronecker) tensor product of ⟨1×2×1:2⟩ with ⟨12×15×30:3040⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table