Description of fast matrix multiplication algorithm: ⟨12×15×30:3040⟩

Algorithm type

16X4Y9Z6+24X2Y9Z6+64X2Y3Z12+368X4Y6Z6+96XY3Z12+64X8Y3Z3+208X2Y9Z3+680X2Y6Z6+312XY9Z3+192XY6Z6+64X2Y6Z3+64X2Y3Z6+96X4Y3Z3+96XY6Z3+96XY3Z6+240X2Y3Z3+360XY3Z316X4Y9Z624X2Y9Z664X2Y3Z12368X4Y6Z696XY3Z1264X8Y3Z3208X2Y9Z3680X2Y6Z6312XY9Z3192XY6Z664X2Y6Z364X2Y3Z696X4Y3Z396XY6Z396XY3Z6240X2Y3Z3360XY3Z316*X^4*Y^9*Z^6+24*X^2*Y^9*Z^6+64*X^2*Y^3*Z^12+368*X^4*Y^6*Z^6+96*X*Y^3*Z^12+64*X^8*Y^3*Z^3+208*X^2*Y^9*Z^3+680*X^2*Y^6*Z^6+312*X*Y^9*Z^3+192*X*Y^6*Z^6+64*X^2*Y^6*Z^3+64*X^2*Y^3*Z^6+96*X^4*Y^3*Z^3+96*X*Y^6*Z^3+96*X*Y^3*Z^6+240*X^2*Y^3*Z^3+360*X*Y^3*Z^3

Algorithm definition

The algorithm ⟨12×15×30:3040⟩ is the (Kronecker) tensor product of ⟨3×3×6:40⟩ with ⟨4×5×5:76⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table