Description of fast matrix multiplication algorithm: ⟨12×20×20:2784⟩

Algorithm type

16X6Y4Z2+272X4Y4Z4+32X2Y8Z2+16X2Y4Z6+80X6Y2Z2+32X4Y4Z2+16X2Y6Z2+32X2Y4Z4+80X2Y2Z6+16X4Y2Z2+208X2Y4Z2+16X2Y2Z4+32X3Y2Z+656X2Y2Z2+64XY4Z+32XY2Z3+160X3YZ+64X2Y2Z+32XY3Z+64XY2Z2+160XYZ3+32X2YZ+416XY2Z+32XYZ2+224XYZ16X6Y4Z2272X4Y4Z432X2Y8Z216X2Y4Z680X6Y2Z232X4Y4Z216X2Y6Z232X2Y4Z480X2Y2Z616X4Y2Z2208X2Y4Z216X2Y2Z432X3Y2Z656X2Y2Z264XY4Z32XY2Z3160X3YZ64X2Y2Z32XY3Z64XY2Z2160XYZ332X2YZ416XY2Z32XYZ2224XYZ16*X^6*Y^4*Z^2+272*X^4*Y^4*Z^4+32*X^2*Y^8*Z^2+16*X^2*Y^4*Z^6+80*X^6*Y^2*Z^2+32*X^4*Y^4*Z^2+16*X^2*Y^6*Z^2+32*X^2*Y^4*Z^4+80*X^2*Y^2*Z^6+16*X^4*Y^2*Z^2+208*X^2*Y^4*Z^2+16*X^2*Y^2*Z^4+32*X^3*Y^2*Z+656*X^2*Y^2*Z^2+64*X*Y^4*Z+32*X*Y^2*Z^3+160*X^3*Y*Z+64*X^2*Y^2*Z+32*X*Y^3*Z+64*X*Y^2*Z^2+160*X*Y*Z^3+32*X^2*Y*Z+416*X*Y^2*Z+32*X*Y*Z^2+224*X*Y*Z

Algorithm definition

The algorithm ⟨12×20×20:2784⟩ is the (Kronecker) tensor product of ⟨3×5×5:58⟩ with ⟨4×4×4:48⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table