Description of fast matrix multiplication algorithm: ⟨12×20×20:2842⟩

Algorithm type

X12Y8Z4+17X8Y8Z8+2X4Y16Z4+X4Y8Z12+5X12Y4Z4+2X8Y8Z4+X4Y12Z4+2X4Y8Z8+5X4Y4Z12+X8Y4Z4+13X4Y8Z4+X4Y4Z8+12X6Y4Z2+211X4Y4Z4+24X2Y8Z2+12X2Y4Z6+60X6Y2Z2+24X4Y4Z2+12X2Y6Z2+24X2Y4Z4+60X2Y2Z6+12X4Y2Z2+156X2Y4Z2+12X2Y2Z4+36X3Y2Z+696X2Y2Z2+72XY4Z+36XY2Z3+180X3YZ+72X2Y2Z+36XY3Z+72XY2Z2+180XYZ3+36X2YZ+468XY2Z+36XYZ2+252XYZX12Y8Z417X8Y8Z82X4Y16Z4X4Y8Z125X12Y4Z42X8Y8Z4X4Y12Z42X4Y8Z85X4Y4Z12X8Y4Z413X4Y8Z4X4Y4Z812X6Y4Z2211X4Y4Z424X2Y8Z212X2Y4Z660X6Y2Z224X4Y4Z212X2Y6Z224X2Y4Z460X2Y2Z612X4Y2Z2156X2Y4Z212X2Y2Z436X3Y2Z696X2Y2Z272XY4Z36XY2Z3180X3YZ72X2Y2Z36XY3Z72XY2Z2180XYZ336X2YZ468XY2Z36XYZ2252XYZX^12*Y^8*Z^4+17*X^8*Y^8*Z^8+2*X^4*Y^16*Z^4+X^4*Y^8*Z^12+5*X^12*Y^4*Z^4+2*X^8*Y^8*Z^4+X^4*Y^12*Z^4+2*X^4*Y^8*Z^8+5*X^4*Y^4*Z^12+X^8*Y^4*Z^4+13*X^4*Y^8*Z^4+X^4*Y^4*Z^8+12*X^6*Y^4*Z^2+211*X^4*Y^4*Z^4+24*X^2*Y^8*Z^2+12*X^2*Y^4*Z^6+60*X^6*Y^2*Z^2+24*X^4*Y^4*Z^2+12*X^2*Y^6*Z^2+24*X^2*Y^4*Z^4+60*X^2*Y^2*Z^6+12*X^4*Y^2*Z^2+156*X^2*Y^4*Z^2+12*X^2*Y^2*Z^4+36*X^3*Y^2*Z+696*X^2*Y^2*Z^2+72*X*Y^4*Z+36*X*Y^2*Z^3+180*X^3*Y*Z+72*X^2*Y^2*Z+36*X*Y^3*Z+72*X*Y^2*Z^2+180*X*Y*Z^3+36*X^2*Y*Z+468*X*Y^2*Z+36*X*Y*Z^2+252*X*Y*Z

Algorithm definition

The algorithm ⟨12×20×20:2842⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨6×10×10:406⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table