# Algorithm type

${X}^{6}{Y}^{4}{Z}^{2}+17{X}^{4}{Y}^{4}{Z}^{4}+2{X}^{2}{Y}^{8}{Z}^{2}+{X}^{2}{Y}^{4}{Z}^{6}+5{X}^{6}{Y}^{2}{Z}^{2}+2{X}^{4}{Y}^{4}{Z}^{2}+{X}^{2}{Y}^{6}{Z}^{2}+2{X}^{2}{Y}^{4}{Z}^{4}+5{X}^{2}{Y}^{2}{Z}^{6}+{X}^{4}{Y}^{2}{Z}^{2}+13{X}^{2}{Y}^{4}{Z}^{2}+{X}^{2}{Y}^{2}{Z}^{4}+6{X}^{3}{Y}^{2}Z+109{X}^{2}{Y}^{2}{Z}^{2}+12X{Y}^{4}Z+6X{Y}^{2}{Z}^{3}+30{X}^{3}YZ+12{X}^{2}{Y}^{2}Z+6X{Y}^{3}Z+12X{Y}^{2}{Z}^{2}+30XY{Z}^{3}+6{X}^{2}YZ+78X{Y}^{2}Z+6XY{Z}^{2}+42XYZ$

# Algorithm definition

The algorithm ⟨6×10×10:406⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨3×5×5:58⟩.

# Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.

Back to main table