Description of fast matrix multiplication algorithm: ⟨12×16×16:1824⟩

Algorithm type

160X4Y4Z4+48X6Y2Z2+32X4Y4Z2+32X2Y6Z2+32X2Y4Z4+48X2Y2Z6+16X4Y2Z2+176X2Y4Z2+16X2Y2Z4+368X2Y2Z2+96X3YZ+64X2Y2Z+64XY3Z+64XY2Z2+96XYZ3+32X2YZ+352XY2Z+32XYZ2+96XYZ160X4Y4Z448X6Y2Z232X4Y4Z232X2Y6Z232X2Y4Z448X2Y2Z616X4Y2Z2176X2Y4Z216X2Y2Z4368X2Y2Z296X3YZ64X2Y2Z64XY3Z64XY2Z296XYZ332X2YZ352XY2Z32XYZ296XYZ160*X^4*Y^4*Z^4+48*X^6*Y^2*Z^2+32*X^4*Y^4*Z^2+32*X^2*Y^6*Z^2+32*X^2*Y^4*Z^4+48*X^2*Y^2*Z^6+16*X^4*Y^2*Z^2+176*X^2*Y^4*Z^2+16*X^2*Y^2*Z^4+368*X^2*Y^2*Z^2+96*X^3*Y*Z+64*X^2*Y^2*Z+64*X*Y^3*Z+64*X*Y^2*Z^2+96*X*Y*Z^3+32*X^2*Y*Z+352*X*Y^2*Z+32*X*Y*Z^2+96*X*Y*Z

Algorithm definition

The algorithm ⟨12×16×16:1824⟩ is the (Kronecker) tensor product of ⟨3×4×4:38⟩ with ⟨4×4×4:48⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table