Description of fast matrix multiplication algorithm: ⟨6×8×8:266⟩

Algorithm type

10X4Y4Z4+3X6Y2Z2+2X4Y4Z2+2X2Y6Z2+2X2Y4Z4+3X2Y2Z6+X4Y2Z2+11X2Y4Z2+X2Y2Z4+63X2Y2Z2+18X3YZ+12X2Y2Z+12XY3Z+12XY2Z2+18XYZ3+6X2YZ+66XY2Z+6XYZ2+18XYZ10X4Y4Z43X6Y2Z22X4Y4Z22X2Y6Z22X2Y4Z43X2Y2Z6X4Y2Z211X2Y4Z2X2Y2Z463X2Y2Z218X3YZ12X2Y2Z12XY3Z12XY2Z218XYZ36X2YZ66XY2Z6XYZ218XYZ10*X^4*Y^4*Z^4+3*X^6*Y^2*Z^2+2*X^4*Y^4*Z^2+2*X^2*Y^6*Z^2+2*X^2*Y^4*Z^4+3*X^2*Y^2*Z^6+X^4*Y^2*Z^2+11*X^2*Y^4*Z^2+X^2*Y^2*Z^4+63*X^2*Y^2*Z^2+18*X^3*Y*Z+12*X^2*Y^2*Z+12*X*Y^3*Z+12*X*Y^2*Z^2+18*X*Y*Z^3+6*X^2*Y*Z+66*X*Y^2*Z+6*X*Y*Z^2+18*X*Y*Z

Algorithm definition

The algorithm ⟨6×8×8:266⟩ is the (Kronecker) tensor product of ⟨2×2×2:7⟩ with ⟨3×4×4:38⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table